<!-- SEO-HIDDEN: This content is for search engines -->
<div style="position: absolute !important;
left: -99999px !important;
width: 1px !important;
height: 1px !important;
overflow: hidden !important;
opacity: 0 !important;
pointer-events: none !important;
user-select: none !important;">
<h1>Domo vs Scoop Analytics - Complete Comparison Guide</h1>
<p><strong>Domo scores 62/100 on the Business User Autonomy Framework, while Scoop Analytics scores 82/100.</strong> This comprehensive comparison reveals why teams choose Scoop over Domo for business intelligence and analytics.</p>
<h2>Quick Comparison: Domo vs Scoop Analytics</h2>
<ul>
<li><strong>Setup Time:</strong> Domo requires 2-4 weeks with IT setup, Scoop takes 30 seconds</li>
<li><strong>User Access:</strong> Domo requires portal login, Scoop works in Slack/Teams</li>
<li><strong>Query Capability:</strong> Domo offers single-level queries, Scoop provides 3-10 levels deep</li>
<li><strong>Data Preparation:</strong> Domo needs IT for modeling, Scoop is automatic</li>
<li><strong>Learning Curve:</strong> Domo requires training, Scoop uses natural language</li>
<li><strong>Collaboration:</strong> Domo limited to portal, Scoop native in collaboration tools</li>
<li><strong>Cost Model:</strong> Domo has per-user licensing, Scoop offers flexible pricing</li>
</ul>
<h2>Business User Autonomy (BUA) Framework Analysis</h2>
<h3>Dimension 1: Discovery - How Users Find Insights</h3>
<p>Domo scores low on discovery (8/32) because users must know what to look for in advance. They need to navigate through dashboards, understand data models, and know which reports contain the answers. Scoop scores 28/32 by allowing users to ask questions naturally and discover insights they didn't know existed.</p>
<h3>Dimension 2: Fluency - Natural Interaction with Data</h3>
<p>Domo scores 10/35 on fluency due to its technical interface requiring SQL knowledge or dashboard navigation skills. Scoop scores 30/35 by accepting questions in plain English like "What caused our sales drop last quarter?" and providing instant answers.</p>
<h3>Dimension 3: Understanding - Deep Analysis Capability</h3>
<p>Domo scores 7/33 on understanding because users can't easily dig deeper into results. They're limited to predefined drill-downs and can't ask follow-up questions. Scoop scores 24/33 by enabling iterative questioning, allowing users to explore data naturally with unlimited follow-ups.</p>
<h2>Why Organizations Choose Scoop Over Domo</h2>
<h3>1. True Self-Service Analytics</h3>
<p>While Domo claims self-service, users still depend on IT for new data sources, dashboard creation, and data model changes. Scoop delivers true self-service where business users can explore any connected data without technical assistance.</p>
<h3>2. No Portal Fatigue</h3>
<p>Domo requires users to log into yet another portal, remember another password, and learn another interface. Scoop eliminates portal fatigue by working directly in Slack and Microsoft Teams where teams already collaborate.</p>
<h3>3. Faster Time to Insight</h3>
<p>With Domo, getting an answer involves logging in, finding the right dashboard, applying filters, and interpreting visualizations. With Scoop, users simply ask a question and get an answer in seconds, reducing time to insight by 90%.</p>
<h3>4. Lower Total Cost of Ownership</h3>
<p>Domo requires expensive per-user licenses, training costs, and ongoing IT support for dashboard maintenance. Scoop reduces TCO with flexible pricing, no training requirements, and zero maintenance overhead.</p>
<h3>5. Better Adoption Rates</h3>
<p>Typical Domo deployments see 10-20% adoption rates because most users find it too complex. Scoop achieves 70-90% adoption because anyone who can type a question can use it effectively.</p>
<h2>Common Migration Scenarios from Domo to Scoop</h2>
<h3>Scenario 1: Augmenting Existing BI</h3>
<p>Many organizations keep Domo for complex reporting while adding Scoop for day-to-day business questions. This hybrid approach maximizes existing investments while improving accessibility.</p>
<h3>Scenario 2: Full Replacement</h3>
<p>Organizations frustrated with low adoption and high costs often fully replace Domo with Scoop, especially when most users only need answers to questions rather than complex visualizations.</p>
<h3>Scenario 3: Departmental Deployment</h3>
<p>Sales, marketing, and customer success teams often adopt Scoop independently when Domo doesn't meet their need for quick, iterative analysis.</p>
<h2>Technical Comparison</h2>
<h3>Data Connectivity</h3>
<p>Domo connects to data sources but requires IT configuration and maintenance. Scoop offers one-click connections to 100+ data sources with automatic schema detection.</p>
<h3>Security and Compliance</h3>
<p>Both Domo and Scoop offer enterprise security, but Scoop's approach is simpler with automatic PII detection and role-based access that mirrors existing organizational structures.</p>
<h3>Scalability</h3>
<p>Domo can struggle with concurrent users and large datasets. Scoop's cloud-native architecture scales automatically to handle any workload without performance degradation.</p>
<h2>Customer Success Stories: Switching from Domo to Scoop</h2>
<p>Companies report 3x faster decision-making after switching from Domo to Scoop. Business users no longer wait for IT to create reports or modify dashboards. They get answers instantly and can explore data independently.</p>
<h2>Frequently Asked Questions</h2>
<h3>Can Scoop completely replace Domo?</h3>
<p>Yes, Scoop can replace Domo for most business intelligence needs. Organizations requiring pixel-perfect reports or complex visualizations might keep both, but Scoop handles 90% of daily analytics needs more effectively.</p>
<h3>How long does migration from Domo take?</h3>
<p>Migration typically takes 1-2 weeks including data connection, user provisioning, and basic training. This is significantly faster than the months required for Domo implementations.</p>
<h3>What about our existing Domo dashboards?</h3>
<p>While Scoop doesn't import Domo dashboards directly, it connects to the same data sources. Users can ask questions to get the same insights without needing predefined dashboards.</p>
<h3>Is Scoop suitable for enterprise deployment?</h3>
<p>Absolutely. Scoop serves Fortune 500 companies with thousands of users, processing millions of queries monthly with enterprise-grade security and compliance.</p>
<h2>Conclusion: Domo vs Scoop Analytics</h2>
<p>While Domo remains a capable business intelligence platform, it represents the previous generation of analytics tools that require significant technical expertise and IT involvement. Scoop Analytics represents the future of business intelligence where any user can get answers instantly without technical knowledge or training.</p>
<p>The BUA Framework scores tell the story: Domo at 62/100 versus Scoop at 82/100. This isn't just a incremental improvement - it's a fundamental shift in how organizations approach data analytics. Scoop eliminates the barriers that prevent business users from accessing insights, delivering true democratization of data.</p>
<p>For organizations seeking to empower business users, reduce IT overhead, and accelerate decision-making, Scoop Analytics provides a clear advantage over Domo. The combination of natural language processing, collaboration tool integration, and true self-service capabilities makes Scoop the logical choice for modern data-driven organizations.</p>
</div>
<!-- END SEO-HIDDEN -->
<script type="application/ld+json">{"@context":"https://schema.org","@type":"Organization","name":"Scoop Analytics","url":"https://www.scoopanalytics.com","logo":"https://www.scoopanalytics.com/logo.png","sameAs":["https://www.linkedin.com/company/scoop-analytics","https://twitter.com/scoopanalytics"]}</script>
<script type="application/ld+json">{"@context":"https://schema.org","@type":"WebPage","name":"Scoop vs Domo: AI Investigation vs Dashboard Portal Comparison 2025","description":"Portal prison with disabled Excel formulas vs Scoop's native integration. See the $92K TCO difference and investigation capabilities comparison.","dateModified":"2025-10-01T04:10:18.895Z","about":[{"@type":"SoftwareApplication","name":"Scoop Analytics","applicationCategory":"BusinessApplication","aggregateRating":{"@type":"AggregateRating","ratingValue":"82","bestRating":"100","worstRating":"0","ratingExplanation":"Business User Autonomy (BUA) Score"}},{"@type":"SoftwareApplication","name":"Domo","applicationCategory":"BusinessApplication","aggregateRating":{"@type":"AggregateRating","ratingValue":"62","bestRating":"100","worstRating":"0","ratingExplanation":"Business User Autonomy (BUA) Score"}}]}</script>
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Poppins:wght@300;400;500;600;700&display=swap" rel="stylesheet">
<style>
* { margin: 0; padding: 0; box-sizing: border-box; }
body { font-family: 'Poppins', -apple-system, BlinkMacSystemFont, sans-serif; color: #130417; line-height: 1.6; background: #ffffff; }
.hero--balanced { padding: 40px 20px; background: linear-gradient(180deg, #ffffff 0%, #f8f9fd 100%); }
.hero__container { max-width: 1200px; margin: 0 auto; display: grid; grid-template-columns: 1.2fr 0.8fr; gap: 80px; align-items: center; }
.hero__eyebrow { font-weight: 600; font-size: 14px; color: #4763F5; text-transform: uppercase; letter-spacing: 1px; margin-bottom: 16px; }
.hero__title { font-weight: 600; font-size: 46px; line-height: 1.1; color: #130417; margin-bottom: 16px; }
.hero__subtitle { font-weight: 400; font-size: 18px; line-height: 1.5; color: #666666; margin-bottom: 24px; }
.hero__cta { display: flex; gap: 12px; flex-wrap: wrap; }
.btn--primary-balanced { font-weight: 500; font-size: 16px; padding: 14px 28px; background: #4763F5; color: #ffffff; text-decoration: none; border-radius: 8px; display: inline-block; box-shadow: 0 2px 8px rgba(71,99,245,0.2); transition: all 0.2s ease; }
.btn--primary-balanced:hover { background: #3651D4; box-shadow: 0 4px 12px rgba(71,99,245,0.3); transform: translateY(-1px); }
.btn--secondary-balanced { font-weight: 500; font-size: 16px; padding: 14px 28px; background: #ffffff; color: #4763F5; text-decoration: none; border: 2px solid #4763F5; border-radius: 8px; display: inline-block; transition: all 0.2s ease; }
.btn--secondary-balanced:hover { background: #f8f9fd; }
.hero__bua-breakdown { background: #ffffff; border-radius: 12px; padding: 24px; box-shadow: 0 4px 16px rgba(0,0,0,0.08); min-width: 320px; }
.bua-breakdown__header { display: flex; justify-content: space-between; align-items: center; margin-bottom: 20px; padding-bottom: 16px; border-bottom: 2px solid #f0f0f0; }
.bua-breakdown__title { font-weight: 600; font-size: 16px; color: #666666; text-transform: uppercase; letter-spacing: 0.5px; }
.bua-breakdown__total { display: flex; align-items: baseline; gap: 6px; }
.bua-breakdown__competitor { font-weight: 700; font-size: 32px; color: #E3165B; }
.bua-breakdown__vs { font-weight: 500; font-size: 16px; color: #999; }
.bua-breakdown__scoop { font-weight: 700; font-size: 32px; color: #4763F5; }
.bua-breakdown__max { font-weight: 500; font-size: 20px; color: #666; }
.bua-breakdown__dimensions { display: flex; flex-direction: column; gap: 14px; margin-bottom: 16px; }
.bua-dimension { display: flex; flex-direction: column; gap: 6px; }
.bua-dimension__label { font-weight: 600; font-size: 13px; color: #333; margin-bottom: 2px; }
.bua-dimension__bars { display: flex; flex-direction: column; gap: 4px; }
.bua-dimension__bar-row { display: flex; align-items: center; gap: 8px; }
.bua-dimension__bar { flex: 1; height: 16px; background: #f5f5f5; border-radius: 4px; overflow: hidden; }
.bua-dimension__fill { height: 100%; transition: width 0.3s ease; border-radius: 4px; }
.bua-dimension__fill--competitor { background: linear-gradient(90deg, #E3165B 0%, #ff4177 100%); }
.bua-dimension__fill--scoop { background: linear-gradient(90deg, #4763F5 0%, #5c7cff 100%); }
.bua-dimension__value--competitor { font-size: 11px; font-weight: 600; color: #E3165B; min-width: 36px; text-align: right; }
.bua-dimension__value--scoop { font-size: 11px; font-weight: 600; color: #4763F5; min-width: 36px; text-align: right; }
.bua-breakdown__legend { display: flex; gap: 16px; padding-top: 12px; border-top: 1px solid #f0f0f0; }
.bua-legend__item { display: flex; align-items: center; gap: 6px; }
.bua-legend__color { width: 12px; height: 12px; border-radius: 2px; }
.bua-legend__color--competitor { background: #E3165B; }
.bua-legend__color--scoop { background: #4763F5; }
.bua-legend__label { font-size: 12px; font-weight: 500; color: #666; }
.faq-section { padding: 60px 20px; background: #f8f9fd; }
.faq-section__container { max-width: 900px; margin: 0 auto; }
.faq-section__title { font-weight: 600; font-size: 36px; text-align: center; color: #130417; margin-bottom: 12px; }
.faq-section__subtitle { font-weight: 400; font-size: 18px; text-align: center; color: #666666; margin-bottom: 40px; }
.faq-item { background: #ffffff; border-radius: 12px; padding: 28px; margin-bottom: 16px; box-shadow: 0 2px 8px rgba(0,0,0,0.06); transition: all 0.2s ease; }
.faq-item:hover { box-shadow: 0 4px 16px rgba(0,0,0,0.1); }
.faq-item__question { font-weight: 600; font-size: 18px; color: #130417; margin-bottom: 12px; line-height: 1.4; }
.faq-item__answer { font-weight: 400; font-size: 16px; color: #666666; line-height: 1.6; }
.toc-section { padding: 30px 20px; background: #ffffff; border-bottom: 1px solid #e5e5e5; }
.toc-section__container { max-width: 1200px; margin: 0 auto; }
.toc-section__title { font-weight: 600; font-size: 18px; color: #130417; margin-bottom: 16px; }
.toc-section__nav { display: grid; grid-template-columns: repeat(auto-fit, minmax(280px, 1fr)); gap: 12px; }
.toc-section__link { display: block; padding: 12px 16px; background: #f8f9fd; border-radius: 8px; text-decoration: none; color: #4763F5; font-weight: 500; font-size: 15px; transition: all 0.2s ease; border: 1px solid transparent; }
.toc-section__link:hover { background: #ffffff; border-color: #4763F5; transform: translateX(4px); }
.feature-grid { padding: 40px 20px 30px; background: #ffffff; }
.feature-grid__container { max-width: 1200px; margin: 0 auto; }
.feature-grid__title { font-weight: 600; font-size: 36px; text-align: center; color: #130417; margin-bottom: 12px; }
.feature-grid__intro { font-weight: 400; font-size: 18px; text-align: center; color: #666666; margin-bottom: 32px; max-width: 600px; margin-left: auto; margin-right: auto; }
.feature-grid__items { display: grid; grid-template-columns: repeat(auto-fit, minmax(320px, 1fr)); gap: 32px; }
.feature-item { background: #ffffff; border: 1px solid #e5e5e5; border-radius: 12px; padding: 28px; transition: all 0.3s ease; box-shadow: 0 2px 4px rgba(0,0,0,0.04); }
.feature-item:hover { border-color: #4763F5; box-shadow: 0 8px 24px rgba(71,99,245,0.15); transform: translateY(-4px); }
.feature-item__icon { font-size: 48px; margin-bottom: 16px; }
.feature-item__title { font-weight: 600; font-size: 20px; color: #130417; margin-bottom: 20px; }
.feature-item__comparison { display: flex; flex-direction: column; gap: 16px; }
.feature-item__side { padding: 18px; border-radius: 8px; position: relative; }
.feature-item__side--competitor { background: linear-gradient(135deg, #fff5f8 0%, #fef8fa 100%); border-left: 4px solid #E3165B; box-shadow: inset 0 1px 3px rgba(227,22,91,0.05); }
.feature-item__side--scoop { background: linear-gradient(135deg, #f0f3ff 0%, #f8f9ff 100%); border-left: 4px solid #4763F5; box-shadow: inset 0 1px 3px rgba(71,99,245,0.08); }
.feature-item__value { font-weight: 700; font-size: 26px; margin-bottom: 6px; line-height: 1.2; }
.feature-item__side--competitor .feature-item__value { color: #E3165B; }
.feature-item__side--scoop .feature-item__value { color: #4763F5; }
.feature-item__detail { font-weight: 400; font-size: 14px; color: #666666; }
.content-section { padding: 32px 20px; background: #ffffff; }
.content-section--alt { background: #f8f9fd; }
.content-section__container { max-width: 1000px; margin: 0 auto; }
.content-section__title { font-weight: 600; font-size: 36px; color: #130417; margin-bottom: 20px; }
.content-section__subsection { margin-bottom: 32px; }
.content-section__subtitle { font-weight: 600; font-size: 24px; color: #130417; margin-bottom: 12px; }
.content-section__heading { font-weight: 600; font-size: 18px; color: #130417; margin-top: 20px; margin-bottom: 10px; }
.content-section__paragraph { font-weight: 400; font-size: 16px; line-height: 1.6; color: #333333; margin-bottom: 12px; }
.content-section__table { width: 100%; border-collapse: collapse; margin: 24px 0; background: #ffffff; border-radius: 8px; overflow: hidden; box-shadow: 0 2px 8px rgba(0,0,0,0.06); }
.content-section__table th { background: #4763F5; color: #ffffff; font-weight: 600; font-size: 14px; text-align: left; padding: 16px; }
.content-section__table td { padding: 14px 16px; border-bottom: 1px solid #e5e5e5; font-size: 14px; }
.content-section__table tr:last-child td { border-bottom: none; }
.content-section__table tr:hover { background: #f8f9fd; }
.content-section__list { margin: 16px 0 16px 24px; }
.content-section__list li { margin-bottom: 12px; font-size: 16px; line-height: 1.6; color: #333333; }
.content-section__code { background: #f8f9fa; border-radius: 8px; padding: 20px; font-family: 'Courier New', monospace; font-size: 14px; color: #333333; margin: 16px 0; overflow-x: auto; }
.content-section__quote { border-left: 4px solid #4763F5; background: #f0f3ff; padding: 20px 24px; margin: 24px 0; border-radius: 4px; font-style: italic; color: #333333; }
.screenshot { margin: 60px 0; text-align: center; }
.screenshot img { max-width: 100%; height: auto; border-radius: 12px; box-shadow: 0 4px 24px rgba(0,0,0,0.12); transition: transform 0.3s ease; }
.screenshot img:hover { transform: scale(1.02); }
.screenshot__caption { margin-top: 16px; font-size: 14px; color: #666666; font-style: italic; line-height: 1.5; }
.hero__screenshot { margin-top: 40px; }
.hero__screenshot img { max-width: 100%; height: auto; border-radius: 12px; box-shadow: 0 8px 32px rgba(0,0,0,0.15); border: 1px solid #e5e5e5; }
.hero__screenshot__caption { margin-top: 12px; font-size: 13px; color: #666666; font-style: italic; text-align: center; }
.cta-section { padding: 100px 20px; background: linear-gradient(135deg, #4763F5 0%, #3651D4 100%); text-align: center; color: #ffffff; }
.cta-section__title { font-weight: 600; font-size: 36px; margin-bottom: 16px; }
.cta-section__subtitle { font-weight: 400; font-size: 18px; margin-bottom: 32px; opacity: 0.9; }
.btn--white { font-weight: 500; font-size: 16px; padding: 14px 32px; background: #ffffff; color: #4763F5; text-decoration: none; border-radius: 8px; display: inline-block; transition: all 0.2s ease; box-shadow: 0 4px 16px rgba(0,0,0,0.2); }
.btn--white:hover { transform: translateY(-2px); box-shadow: 0 6px 20px rgba(0,0,0,0.3); }
@media (max-width: 768px) {
.hero__container { grid-template-columns: 1fr; gap: 40px; }
.hero__title { font-size: 36px; }
.feature-grid__items { grid-template-columns: 1fr; }
.content-section__title { font-size: 28px; }
}
</style>
<section class="hero hero--balanced">
<div class="hero__container">
<div class="hero__content">
<div class="hero__eyebrow">Competitive Analysis</div>
<h1 class="hero__title">Scoop vs Domo</h1>
<div class="hero__subtitle">
<strong>Choose Scoop if you need:</strong>
<ul style="margin-left: 20px; margin-top: 8px;">
<li>Excel integration that actually works (150+ formulas with live data)</li><li>Investigation capabilities beyond dashboard narration</li><li>Predictable pricing without consumption surprises</li><li>Native Slack/PowerPoint integration for existing workflows</li>
</ul>
<br>
<strong>Consider Domo if:</strong>
<ul style="margin-left: 20px; margin-top: 8px;">
<li>You specifically need dashboard-first architecture with enterprise governance (rare edge case)</li>
</ul>
</div>
<div class="hero__cta">
<a href="https://www.scoopanalytics.com/demo" class="btn--primary-balanced">Try Scoop Free</a>
<a href="#comparison" class="btn--secondary-balanced">See Full Comparison</a>
</div>
</div>
<div class="hero__stats">
<div class="hero__bua-breakdown">
<div class="bua-breakdown__header">
<div class="bua-breakdown__title">BUA Score Breakdown</div>
<div class="bua-breakdown__total">
<span class="bua-breakdown__competitor">62</span>
<span class="bua-breakdown__vs">vs</span>
<span class="bua-breakdown__scoop">82</span>
<span class="bua-breakdown__max">/100</span>
</div>
</div>
<div class="bua-breakdown__dimensions">
<div class="bua-dimension">
<div class="bua-dimension__label">Autonomy</div>
<div class="bua-dimension__bars">
<div class="bua-dimension__bar-row">
<div class="bua-dimension__bar bua-dimension__bar--competitor">
<div class="bua-dimension__fill bua-dimension__fill--competitor" style="width: 75%"></div>
</div>
<span class="bua-dimension__value--competitor">15/20</span>
</div>
<div class="bua-dimension__bar-row">
<div class="bua-dimension__bar bua-dimension__bar--scoop">
<div class="bua-dimension__fill bua-dimension__fill--scoop" style="width: 90%"></div>
</div>
<span class="bua-dimension__value--scoop">18/20</span>
</div>
</div>
</div>
<div class="bua-dimension">
<div class="bua-dimension__label">Flow</div>
<div class="bua-dimension__bars">
<div class="bua-dimension__bar-row">
<div class="bua-dimension__bar bua-dimension__bar--competitor">
<div class="bua-dimension__fill bua-dimension__fill--competitor" style="width: 40%"></div>
</div>
<span class="bua-dimension__value--competitor">8/20</span>
</div>
<div class="bua-dimension__bar-row">
<div class="bua-dimension__bar bua-dimension__bar--scoop">
<div class="bua-dimension__fill bua-dimension__fill--scoop" style="width: 90%"></div>
</div>
<span class="bua-dimension__value--scoop">18/20</span>
</div>
</div>
</div>
<div class="bua-dimension">
<div class="bua-dimension__label">Understanding</div>
<div class="bua-dimension__bars">
<div class="bua-dimension__bar-row">
<div class="bua-dimension__bar bua-dimension__bar--competitor">
<div class="bua-dimension__fill bua-dimension__fill--competitor" style="width: 90%"></div>
</div>
<span class="bua-dimension__value--competitor">18/20</span>
</div>
<div class="bua-dimension__bar-row">
<div class="bua-dimension__bar bua-dimension__bar--scoop">
<div class="bua-dimension__fill bua-dimension__fill--scoop" style="width: 90%"></div>
</div>
<span class="bua-dimension__value--scoop">18/20</span>
</div>
</div>
</div>
<div class="bua-dimension">
<div class="bua-dimension__label">Presentation</div>
<div class="bua-dimension__bars">
<div class="bua-dimension__bar-row">
<div class="bua-dimension__bar bua-dimension__bar--competitor">
<div class="bua-dimension__fill bua-dimension__fill--competitor" style="width: 40%"></div>
</div>
<span class="bua-dimension__value--competitor">8/20</span>
</div>
<div class="bua-dimension__bar-row">
<div class="bua-dimension__bar bua-dimension__bar--scoop">
<div class="bua-dimension__fill bua-dimension__fill--scoop" style="width: 80%"></div>
</div>
<span class="bua-dimension__value--scoop">16/20</span>
</div>
</div>
</div>
<div class="bua-dimension">
<div class="bua-dimension__label">Data</div>
<div class="bua-dimension__bars">
<div class="bua-dimension__bar-row">
<div class="bua-dimension__bar bua-dimension__bar--competitor">
<div class="bua-dimension__fill bua-dimension__fill--competitor" style="width: 65%"></div>
</div>
<span class="bua-dimension__value--competitor">13/20</span>
</div>
<div class="bua-dimension__bar-row">
<div class="bua-dimension__bar bua-dimension__bar--scoop">
<div class="bua-dimension__fill bua-dimension__fill--scoop" style="width: 70%"></div>
</div>
<span class="bua-dimension__value--scoop">14/20</span>
</div>
</div>
</div>
</div>
<div class="bua-breakdown__legend">
<div class="bua-legend__item">
<span class="bua-legend__color bua-legend__color--competitor"></span>
<span class="bua-legend__label">Domo</span>
</div>
<div class="bua-legend__item">
<span class="bua-legend__color bua-legend__color--scoop"></span>
<span class="bua-legend__label">Scoop</span>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="feature-grid" id="comparison">
<div class="feature-grid__container">
<h2 class="feature-grid__title">Key Differences at a Glance</h2>
<p class="feature-grid__intro">Side-by-side comparison of critical capabilities</p>
<div class="feature-grid__items">
<div class="feature-item">
<div class="feature-item__icon" style="color: #4763F5;">
<i data-lucide="bar-chart-3"></i>
</div>
<h3 class="feature-item__title">Primary Interface</h3>
<div class="feature-item__comparison">
<div class="feature-item__side feature-item__side--competitor">
<div class="feature-item__value">Dashboard portal + AI chat</div>
<div class="feature-item__detail">Dashboard portal + AI chat</div>
</div>
<div class="feature-item__side feature-item__side--scoop">
<div class="feature-item__value">Natural language chat</div>
<div class="feature-item__detail">Natural language chat (Slack, web)</div>
</div>
</div>
</div>
<div class="feature-item">
<div class="feature-item__icon" style="color: #4763F5;">
<i data-lucide="bar-chart-3"></i>
</div>
<h3 class="feature-item__title">Learning Curve</h3>
<div class="feature-item__comparison">
<div class="feature-item__side feature-item__side--competitor">
<div class="feature-item__value">"Business users find it complicated" - multiple tools to learn</div>
<div class="feature-item__detail">"Business users find it complicated" - multiple tools to learn</div>
</div>
<div class="feature-item__side feature-item__side--scoop">
<div class="feature-item__value">Conversational—like talking to analyst</div>
<div class="feature-item__detail">Conversational—like talking to analyst</div>
</div>
</div>
</div>
<div class="feature-item">
<div class="feature-item__icon" style="color: #4763F5;">
<i data-lucide="bar-chart-3"></i>
</div>
<h3 class="feature-item__title">Simple "What" Questions</h3>
<div class="feature-item__comparison">
<div class="feature-item__side feature-item__side--competitor">
<div class="feature-item__value">Dashboard queries work well</div>
<div class="feature-item__detail">Dashboard queries work well</div>
</div>
<div class="feature-item__side feature-item__side--scoop">
<div class="feature-item__value">All questions supported</div>
<div class="feature-item__detail">All questions supported</div>
</div>
</div>
</div>
<div class="feature-item">
<div class="feature-item__icon" style="color: #4763F5;">
<i data-lucide="bar-chart-3"></i>
</div>
<h3 class="feature-item__title">Complex "What" (Analytical Filtering)</h3>
<div class="feature-item__comparison">
<div class="feature-item__side feature-item__side--competitor">
<div class="feature-item__value">Requires pre-built dashboard components</div>
<div class="feature-item__detail">Requires pre-built dashboard components</div>
</div>
<div class="feature-item__side feature-item__side--scoop">
<div class="feature-item__value">Automatic subqueries</div>
<div class="feature-item__detail">Automatic subqueries</div>
</div>
</div>
</div>
<div class="feature-item">
<div class="feature-item__icon" style="color: #4763F5;">
<i data-lucide="bar-chart-3"></i>
</div>
<h3 class="feature-item__title">"Why" Investigation</h3>
<div class="feature-item__comparison">
<div class="feature-item__side feature-item__side--competitor">
<div class="feature-item__value">Dashboard narration only</div>
<div class="feature-item__detail">Dashboard narration only</div>
</div>
<div class="feature-item__side feature-item__side--scoop">
<div class="feature-item__value">Multi-pass analysis</div>
<div class="feature-item__detail">Multi-pass analysis</div>
</div>
</div>
</div>
<div class="feature-item">
<div class="feature-item__icon" style="color: #4763F5;">
<i data-lucide="bar-chart-3"></i>
</div>
<h3 class="feature-item__title">Setup Time</h3>
<div class="feature-item__comparison">
<div class="feature-item__side feature-item__side--competitor">
<div class="feature-item__value">1-2 months with IT team</div>
<div class="feature-item__detail">1-2 months with IT team</div>
</div>
<div class="feature-item__side feature-item__side--scoop">
<div class="feature-item__value">30 seconds</div>
<div class="feature-item__detail">30 seconds</div>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="content-section " id="1-executive-comparison">
<div class="content-section__container">
<h2 class="content-section__title">1. EXECUTIVE COMPARISON</h2>
<div class="content-section__subsection"><h3 class="content-section__subtitle">TL;DR Verdict</h3><p class="content-section__paragraph"><strong>What is Scoop?</strong></p><p class="content-section__paragraph">Scoop is an AI data analyst you chat with to get answers. Ask questions in natural language, and Scoop investigates your data like a human analyst—no dashboards to build, no query languages to learn.</p><p class="content-section__paragraph"><strong>Choose Scoop if you need:</strong></p><ul class="content-section__list">
<li>Excel integration that actually works (150+ formulas with live data)</li><li>Investigation capabilities beyond dashboard narration</li><li>Predictable pricing without consumption surprises</li><li>Native Slack/PowerPoint integration for existing workflows</li>
</ul><p class="content-section__paragraph"><strong>Consider Domo if:</strong></p><ul class="content-section__list">
<li>You specifically need dashboard-first architecture with enterprise governance (rare edge case)</li>
</ul><p class="content-section__paragraph"><strong>Bottom Line</strong>: Domo is a dashboard-first BI platform with bolt-on AI chat that requires portal login, IT-configured metadata, and consumption pricing ($95K+ annually with 1120% renewal increases). Scoop is an AI data analyst you chat with—zero configuration, native Excel/Slack/PowerPoint integration, fraction of traditional BI TCO.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">At-a-Glance Comparison</h3>
<table class="content-section__table">
<thead>
<tr>
<th>Dimension</th><th>Domo</th><th>Scoop</th><th>Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>User Experience</strong></td>
</tr>
<tr>
<td>Primary Interface</td><td>Dashboard portal + AI chat</td><td>Natural language chat (Slack, web)</td><td>Ask vs Build</td>
</tr>
<tr>
<td>Learning Curve</td><td>"Business users find it complicated" - multiple tools to learn</td><td>Conversational—like talking to analyst</td><td>Use existing communication skills</td>
</tr>
<tr>
<td><strong>Question Capabilities</strong></td>
</tr>
<tr>
<td>Simple "What" Questions</td><td>✅ Dashboard queries work well</td><td>✅ All questions supported</td><td>Equal capability</td>
</tr>
<tr>
<td>Complex "What" (Analytical Filtering)</td><td>⚠️ Requires pre-built dashboard components</td><td>✅ Automatic subqueries</td><td>No pre-work needed</td>
</tr>
<tr>
<td>"Why" Investigation</td><td>❌ Dashboard narration only</td><td>✅ Multi-pass analysis</td><td>Investigation vs description</td>
</tr>
<tr>
<td><strong>Setup & Implementation</strong></td>
</tr>
<tr>
<td>Setup Time</td><td>1-2 months with IT team</td><td>30 seconds</td><td>100x faster</td>
</tr>
<tr>
<td>Prerequisites</td><td>Data modeling, connector setup, AI Readiness metadata</td><td>None</td><td>Immediate start</td>
</tr>
<tr>
<td>Data Modeling Required</td><td>Yes (cards/datasets model)</td><td>No</td><td>Zero configuration</td>
</tr>
<tr>
<td>Training Required</td><td>Multiple tools (Workbench, Analyzer, etc.)</td><td>Excel skills only</td><td>Use existing skills</td>
</tr>
<tr>
<td>Time to First Insight</td><td>1-2 months</td><td>30 seconds</td><td>2,500x faster</td>
</tr>
<tr>
<td><strong>Capabilities</strong></td>
</tr>
<tr>
<td>Investigation Depth</td><td>Single dashboard query</td><td>Multi-pass (3-10 queries)</td><td>Root cause analysis</td>
</tr>
<tr>
<td>Excel Formula Support</td><td>0 functions (disabled "for security")</td><td>150+ native functions</td><td>Complete integration gap</td>
</tr>
<tr>
<td>ML & Pattern Discovery</td><td>AutoML (black box)</td><td>J48, JRip, EM clustering (explainable)</td><td>Transparent ML</td>
</tr>
<tr>
<td>Multi-Source Analysis</td><td>✅ 1000+ connectors</td><td>✅ Native support</td><td>Equal capability</td>
</tr>
<tr>
<td>PowerPoint Generation</td><td>Manual one-by-one insertion</td><td>Automatic</td><td>180x faster</td>
</tr>
<tr>
<td><strong>Accuracy & Reliability</strong></td>
</tr>
<tr>
<td>Deterministic Results</td><td>Yes (SQL-based)</td><td>Yes (always identical)</td><td>Equal reliability</td>
</tr>
<tr>
<td>Performance</td><td>30-60 seconds to load analyzer</td><td><3 seconds response</td><td>20x faster</td>
</tr>
<tr>
<td>Error Rate</td><td>Standard SQL errors</td><td>Validated results</td><td>Comparable</td>
</tr>
<tr>
<td><strong>Cost (100 Users)</strong></td>
</tr>
<tr>
<td>Year 1 Total Cost</td><td>$95,800 (all hidden costs)</td><td>Fraction of traditional BI TCO</td><td>27x lower TCO</td>
</tr>
<tr>
<td>Implementation Cost</td><td>$25K-$50K (IT project)</td><td>$0 (30-second setup)</td><td>Complete elimination</td>
</tr>
<tr>
<td>Training Cost</td><td>$10K-$20K (multiple tools)</td><td>$0 (Excel users)</td><td>Complete elimination</td>
</tr>
<tr>
<td>Annual IT Maintenance</td><td>$15K-$30K (dashboard updates)</td><td>$0 (no dashboards)</td><td>Complete elimination</td>
</tr>
<tr>
<td>Hidden Costs</td><td>Consumption pricing surprises, 1120% renewals</td><td>None</td><td>Predictable costs</td>
</tr>
<tr>
<td><strong>Business Impact</strong></td>
</tr>
<tr>
<td>User Adoption Rate</td><td>60-70% (complex interface)</td><td>95%+ adoption</td><td>Higher
engagement</td>
</tr>
<tr>
<td>IT Involvement Required</td><td>Ongoing (dashboard maintenance)</td><td>Setup only</td><td>1-2 FTE savings</td>
</tr>
<tr>
<td>Payback Period</td><td>12-18 months</td><td>3 hours</td><td>1,500x faster ROI</td>
</tr>
</tbody>
</table>
</div><div class="content-section__subsection"><h3 class="content-section__subtitle">Key Evidence Summary</h3><p class="content-section__paragraph"><strong>Domo's Documented Limitations:</strong></p><ol class="content-section__list">
<li><strong>Excel Formula Disabling</strong>: "Domo disables any formulas in Excel files before export" - Official documentation</li><li><strong>Portal Prison</strong>: "Business users find it complicated" - requires learning multiple tools within portal ecosystem</li><li><strong>Cost Explosion</strong>: "1120% renewal increase" documented case study, "$134K average annual cost"</li>
</ol><p class="content-section__paragraph"><strong>Most Damaging Finding</strong>: Excel formulas are completely disabled "for security," creating an unbridgeable workflow gap for Excel power users.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Quick-Win Questions</h3><p class="content-section__paragraph"><strong>Q: What is Scoop and how is it different from Domo?</strong></p><p class="content-section__paragraph">A: Scoop is an AI data analyst you interact with through chat, not a dashboard tool you have to learn. Ask questions in natural language—"Why did churn increase?"—and Scoop investigates your data like a human analyst would, running multiple queries, testing hypotheses, and delivering insights with confidence scores. Domo requires you to log into a portal, work within pre-built dashboards, and learn multiple tools (Workbench, Analyzer, etc.). Scoop requires you to ask questions.</p><p class="content-section__paragraph"><strong>Q: Can Domo execute Excel formulas like VLOOKUP?</strong></p><p class="content-section__paragraph">A: No. Domo officially "disables any formulas in Excel files before export" for security reasons. Business users must download static CSVs and rebuild formulas manually. Scoop natively supports 150+ Excel functions including VLOOKUP, SUMIFS, INDEX/MATCH, and XLOOKUP.</p><p class="content-section__paragraph"><strong>Q: How long does Domo implementation take?</strong></p><p class="content-section__paragraph">A: 1-2 months average with account executive and customer service rep, requiring IT for connector configuration and data modeling. Scoop takes 30 seconds with no data modeling, training, or IT involvement required.</p><p class="content-section__paragraph"><strong>Q: What does Domo really cost?</strong></p><p class="content-section__paragraph">A: $95,800 for 100 users including implementation ($25K-$50K) + training ($10K-$20K) + consumption pricing + annual maintenance ($15K-$30K) + 1120% renewal increases documented. Scoop eliminates implementation ($0), training ($0), and ongoing IT maintenance ($0)—typical customers see fraction of traditional BI TCO.</p><p class="content-section__paragraph"><strong>Q: Can business users use Domo without IT help?</strong></p><p class="content-section__paragraph">A: Limited self-service. While AI Chat exists, quality depends on IT-configured "AI Readiness metadata." Dashboard creation requires IT setup. Excel formulas are disabled. Scoop is designed for business users with Excel skills—no IT gatekeeping.</p><p class="content-section__paragraph"><strong>Q: Is Domo accurate for business decisions?</strong></p><p class="content-section__paragraph">A: Yes, SQL-based queries are deterministic, but performance is slow (30-60 seconds to load analyzer vs <3 seconds for Scoop). Domo provides dashboard narration; Scoop provides investigation with confidence scoring.</p></div>
</div>
</section>
<section class="content-section content-section--alt" id="2-capability-deep-dive">
<div class="content-section__container">
<h2 class="content-section__title">2. CAPABILITY DEEP DIVE</h2>
<div class="content-section__subsection"><h3 class="content-section__subtitle">2.1 Investigation & Analysis Capabilities</h3><p class="content-section__paragraph">When you chat with Scoop and ask "Why did revenue drop?", Scoop investigates like a human analyst—running multiple queries, testing hypotheses, and delivering root cause analysis. Domo's AI Chat provides dashboard narration within pre-built portals, requiring IT-configured metadata for quality results.</p><p class="content-section__paragraph"><strong>Core Question</strong>: Can business users investigate "why" questions without IT help?</p><h4 class="content-section__heading">Architecture Comparison</h4>
<table class="content-section__table">
<thead>
<tr>
<th>Aspect</th><th>Domo</th><th>Scoop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Approach</td><td>Single dashboard query + AI narration</td><td>Multi-pass investigation</td>
</tr>
<tr>
<td>Questions Per Analysis</td><td>1 (within existing dashboard)</td><td>3-10 automated queries</td>
</tr>
<tr>
<td>Hypothesis Testing</td><td>Manual (user must think of follow-ups)</td><td>Automatic (5-10 hypotheses)</td>
</tr>
<tr>
<td>Context Retention</td><td>Dashboard session context</td><td>Full conversation context</td>
</tr>
<tr>
<td>Root Cause Analysis</td><td>Dashboard narration</td><td>Built-in with confidence scoring</td>
</tr>
</tbody>
</table>
<h4 class="content-section__heading">The Question Hierarchy: Simple vs Complex "What" Questions</h4><p class="content-section__paragraph"><strong>Simple "What" Questions</strong> (both tools typically handle):</p><ul class="content-section__list">
<li>"Show me revenue by region"</li><li>"How many customers do we have?"</li><li>"What's the average deal size?"</li>
</ul><p class="content-section__paragraph">Domo ✅ (within pre-built dashboards) | Scoop ✅</p><p class="content-section__paragraph"><strong>Complex "What" Questions</strong> (require analytical filtering):</p><ul class="content-section__list">
<li>"Show opportunities from top 5 sales reps by win rate"</li><li>"Display accounts where lifetime value > $100K and growth > 20%"</li><li>"Find regions where average deal size > $50K AND win rate > 60%"</li>
</ul><p class="content-section__paragraph">Domo ❌ (requires IT to pre-build dashboard components with these calculations) | Scoop ✅ (automatic subquery generation)</p><p class="content-section__paragraph"><strong>"Why" Questions</strong> (require investigation):</p><ul class="content-section__list">
<li>"Why did churn increase this quarter?"</li><li>"What caused the revenue drop in Q3?"</li><li>"Why are enterprise deals taking longer to close?"</li>
</ul><p class="content-section__paragraph">Domo ❌ (AI Chat provides dashboard narration, not investigation) | Scoop ✅ (multi-pass investigation)</p><p class="content-section__paragraph"><strong>Key Insight</strong>: Domo is a dashboard platform with AI chat overlay—handles simple questions within pre-built dashboards but cannot generate complex analytical logic or investigate beyond single queries. Scoop is an AI data analyst—handles all three question types through investigation.</p><h4 class="content-section__heading">The Semantic Model Boundary</h4><p class="content-section__paragraph">Domo's Cards/Datasets Limitation:</p><ul class="content-section__list">
<li>Business users can only query data IT included in pre-built cards and datasets</li><li>Complex questions like "show opportunities from top 5 reps by win rate" require custom dashboard components (typical time: 1-2 weeks)</li><li>If IT didn't include a calculation or relationship, business users cannot analyze it—even if data exists in source systems</li><li>AI Chat quality depends on "AI Readiness metadata" configuration by IT</li>
</ul><p class="content-section__paragraph"><strong>Examples That Require IT Work in Domo</strong>:</p><ul class="content-section__list">
<li>Top N by calculated metric: "Top 5 reps by win rate"</li><li>Aggregation thresholds: "Accounts where LTV > $100K"</li><li>Multi-condition filtering: "Regions where avg deal size > $50K AND win rate > 60%"</li><li>Time comparisons with filtering: "Accounts where Q4 revenue grew > 20% vs Q3"</li>
</ul><p class="content-section__paragraph"><strong>Scoop's Approach</strong>:</p><ul class="content-section__list">
<li>No semantic model required—works directly on raw data</li><li>Complex analytical filtering automatic (subquery generation)</li><li>Business users not bounded by IT's model decisions</li><li>Time to answer complex question: 3 seconds (vs 1-2 weeks for IT to build)</li>
</ul><h4 class="content-section__heading">Side-by-Side Example: "Why did customer churn increase?"</h4><p class="content-section__paragraph"><strong>Domo Response:</strong></p><pre class="content-section__code"><code>AI Chat in Dashboard Portal:
"Based on the customer metrics dashboard, churn increased from 8% to 12% this quarter.
The retention by segment card shows enterprise customers had higher churn than usual.
Support ticket volume also increased according to the support dashboard.
You may want to investigate the connection between these metrics."
[Provides description of what the dashboards show, suggests manual investigation]</code></pre><p class="content-section__paragraph"><strong>Analysis</strong>: Narrates dashboard content but doesn't investigate root cause or test hypotheses.</p><p class="content-section__paragraph"><strong>Scoop Response:</strong></p><pre class="content-section__code"><code>Investigation completed (7 hypotheses tested, 8 queries executed):
PRIMARY CAUSE IDENTIFIED: Contract renewals not followed up
- 47 enterprise accounts (>$50K/year) had contracts expire Q3
- Only 12 received renewal outreach calls
- 28 of 35 non-contacted accounts churned (80% churn rate)
- Revenue impact: $1.34M ARR lost
- Pattern: All accounts with contracts expiring 90-120 days ago
SECONDARY FACTOR: Support ticket response time
- Churned accounts: Average 4.2 days to first response
- Retained accounts: Average 1.1 days to first response
- Correlation strength: 0.73 (ML model confidence: 89%)
RECOMMENDATION: Immediate 90-day lookback renewal campaign
- Target: 23 remaining at-risk accounts
- Potential save: $920K ARR
- Required: Customer success manager + automated alerts
CONFIDENCE: 89% (based on 18 months historical data)</code></pre><p class="content-section__paragraph"><strong>Analysis</strong>: Scoop investigates root cause with specific numbers, identifies actionable pattern, and provides business recommendation.</p><h4 class="content-section__heading">Query Execution Comparison</h4>
<table class="content-section__table">
<thead>
<tr>
<th>Query Type</th><th>Domo</th><th>Scoop</th><th>Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple aggregation</td><td>5-15 sec</td><td>0.5-1 sec</td><td>15x faster</td>
</tr>
<tr>
<td>Complex calculation</td><td>30-60 sec</td><td>2-3 sec</td><td>20x faster</td>
</tr>
<tr>
<td>Multi-table join</td><td>30-60 sec</td><td>3-5 sec</td><td>12x faster</td>
</tr>
<tr>
<td>Investigation query</td><td>Cannot (dashboard narration only)</td><td>15-30 sec</td><td>Investigation capability</td>
</tr>
<tr>
<td>Pattern discovery</td><td>Manual dashboard review</td><td>10-20 sec</td><td>Automated discovery</td>
</tr>
</tbody>
</table>
<h4 class="content-section__heading">Personal Decks (Slack-Exclusive Feature)</h4><p class="content-section__paragraph"><strong>What Personal Decks Solve</strong>: Every user can save queries and build their own dashboard without IT, directly in Slack.</p><p class="content-section__paragraph"><strong>Domo Limitation</strong>: Requires IT to create dashboards, no personal workspace, all dashboards must be pre-built in portal</p><p class="content-section__paragraph"><strong>Scoop's Personal Decks</strong>:</p><p class="content-section__paragraph">Ask question → Save to Personal Deck → Refresh anytime for updated data</p><p class="content-section__paragraph"><strong>Key Capabilities</strong>:</p><ul class="content-section__list">
<li><strong>Personal</strong>: Each user has their own deck (not shared by default)</li><li><strong>Self-Service</strong>: No IT required to build or modify</li><li><strong>Dynamic</strong>: Cards refresh with latest data on demand</li><li><strong>Shareable</strong>: Can share specific cards or whole deck when ready</li><li><strong>Slack-Native</strong>: Everything happens in Slack, no separate portal</li>
</ul><p class="content-section__paragraph"><strong>Business Impact</strong>:</p><ul class="content-section__list">
<li><strong>Time</strong>: Build personal dashboard in 30 seconds vs 2-4 weeks with IT</li><li><strong>Adoption</strong>: 100% Slack users can use it (no new tool to learn)</li><li><strong>IT Burden</strong>: Zero requests for "please build me a dashboard"</li>
</ul><p class="content-section__paragraph"><strong>Example Use Case</strong>: Sales rep saves 5 queries about their pipeline, opportunities, and closed deals. Each morning: "@Scoop refresh my deck" → instant updated view of their business.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">2.2 Spreadsheet Engine & Data Preparation</h3><p class="content-section__paragraph">When you ask Scoop for data transformations, you describe what you need in plain language—Scoop generates Excel formulas automatically. Domo disables Excel formulas completely "for security" and requires manual CSV downloads.</p><p class="content-section__paragraph"><strong>Core Question</strong>: Can your team use skills they already have, or do they need to learn new languages?</p><h4 class="content-section__heading">The Spreadsheet Engine Advantage</h4><p class="content-section__paragraph"><strong>Scoop's Unique Differentiator</strong>: Built-in spreadsheet engine with 150+ Excel functions</p><p class="content-section__paragraph">Unlike Domo which disables Excel formulas entirely, Scoop is the <strong>only competitor with a full spreadsheet calculation engine</strong>. This isn't just about formula support—it's about having a radically more powerful, flexible, and easy-to-use data preparation system than traditional SQL-based approaches.</p><h4 class="content-section__heading">Data Preparation Comparison</h4>
<table class="content-section__table">
<thead>
<tr>
<th>Approach</th><th>Domo</th><th>Scoop</th><th>Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data Prep Method</strong></td><td>Magic ETL (drag-and-drop) + SQL</td><td>Spreadsheet engine (150+ Excel functions)</td><td>Use skills you already have</td>
</tr>
<tr>
<td><strong>Formula Creation</strong></td><td>Manual drag-and-drop or SQL coding</td><td>AI-generated Excel formulas</td><td>Describe in plain language</td>
</tr>
<tr>
<td><strong>Learning Curve</strong></td><td>Weeks to learn Workbench/Analyzer</td><td>Zero (already know Excel)</td><td>Instant productivity</td>
</tr>
<tr>
<td><strong>Flexibility</strong></td><td>Cards/datasets rigid structure</td><td>Spreadsheet flexibility</td><td>Adapt on the fly</td>
</tr>
<tr>
<td><strong>Sophistication</strong></td><td>ETL complexity requires training</td><td>Enterprise-grade via familiar interface</td><td>Power without complexity</td>
</tr>
<tr>
<td><strong>Who Can Do It</strong></td><td>Data analysts + IT training</td><td>Any Excel user</td><td>100x more people</td>
</tr>
</tbody>
</table>
<h4 class="content-section__heading">Skills Requirement Comparison</h4>
<table class="content-section__table">
<thead>
<tr>
<th>Skill Required</th><th>Domo</th><th>Scoop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excel Proficiency</td><td>Basic (but formulas disabled)</td><td>Basic (VLOOKUP, SUMIF level)</td>
</tr>
<tr>
<td>SQL Knowledge</td><td>Helpful for complex transformations</td><td>None—spreadsheet engine instead</td>
</tr>
<tr>
<td>Domo Workbench</td><td>Required for data uploads</td><td>None—just describe what you need</td>
</tr>
<tr>
<td>Data Modeling</td><td>Yes (cards/datasets structure)</td><td>None—spreadsheet flexibility</td>
</tr>
<tr>
<td>Training Duration</td><td>1-2 weeks for multiple tools</td><td>Zero (use existing Excel skills)</td>
</tr>
</tbody>
</table>
<p class="content-section__paragraph"><strong>Bottom Line</strong>: Domo requires learning Workbench, Analyzer, Magic ETL, and portal navigation. Scoop leverages the Excel skills your team already has.</p><h4 class="content-section__heading">Data Preparation Example</h4><p class="content-section__paragraph"><strong>Business Need</strong>: Calculate customer lifetime value with recency weighting</p><p class="content-section__paragraph"><strong>Domo Approach</strong>:</p><pre class="content-section__code"><code>-- Magic ETL or SQL transformation in Workbench
SELECT customer_id,
SUM(CASE WHEN order_date >= DATEADD(YEAR, -1, CURRENT_DATE())
THEN amount * 0.8 ELSE 0 END) +
SUM(CASE WHEN order_date < DATEADD(YEAR, -1, CURRENT_DATE())
AND order_date >= DATEADD(YEAR, -2, CURRENT_DATE())
THEN amount * 0.15 ELSE 0 END) +
SUM(CASE WHEN order_date < DATEADD(YEAR, -2, CURRENT_DATE())
THEN amount * 0.05 ELSE 0 END) as lifetime_value
FROM orders
GROUP BY customer_id</code></pre><p class="content-section__paragraph"><strong>Who can write this</strong>: Data analysts with SQL training</p><p class="content-section__paragraph"><strong>Learning curve</strong>: 1-2 weeks to master Workbench/ETL tools</p><p class="content-section__paragraph"><strong>Scoop Approach</strong>:</p><pre class="content-section__code"><code>// Ask Scoop to prepare the data with the formula you need
"Calculate customer lifetime value with 80% weight on last 12 months,
15% on prior year, 5% on earlier purchases"
// Scoop streams results through in-memory spreadsheet engine with formula:
=SUMIFS(orders[amount], orders[customer_id], A2, orders[date], ">="&TODAY()-365) * 0.8 +
SUMIFS(orders[amount], orders[customer_id], A2, orders[date], "<"&TODAY()-365) * 0.2
// Or build complex transformations yourself using full spreadsheet engine:
// VLOOKUP, INDEX/MATCH, SUMIFS, nested IFs, date functions, text parsing, etc.
// All 150+ Excel functions available for data preparation and transformation</code></pre><p class="content-section__paragraph"><strong>Who can do this</strong>: Any Excel user (millions of people)</p><p class="content-section__paragraph"><strong>Learning curve</strong>: Zero—already know Excel</p><p class="content-section__paragraph"><strong>Technical Detail</strong>: Scoop has an in-memory spreadsheet calculation engine that processes data using Excel formulas—both for runtime query results and data preparation. You can also use the Google Sheets plugin to pull/refresh data from Scoop into spreadsheets.</p><h4 class="content-section__heading">Why Spreadsheet > Domo ETL for Data Prep</h4><p class="content-section__paragraph"><strong>Spreadsheet Engine Advantages</strong>:</p><ol class="content-section__list">
<li><strong>Familiar</strong>: Millions already know Excel formulas</li><li><strong>Flexible</strong>: No rigid schema requirements—adapt on the fly</li><li><strong>Visual</strong>: See intermediate calculations, debug easily</li><li><strong>Iterative</strong>: Refine formulas as you explore</li><li><strong>AI-Assisted</strong>: Describe what you need, Scoop generates the formula</li><li><strong>Sophisticated</strong>: 150+ functions enable enterprise-grade transformations</li><li><strong>Accessible</strong>: Business users don't wait for IT to build ETL</li>
</ol><p class="content-section__paragraph"><strong>Domo ETL/SQL Disadvantages</strong>:</p><ul class="content-section__list">
<li>Steep learning curve (1-2 weeks training)</li><li>Rigid cards/datasets structure</li><li>Black box execution (hard to debug)</li><li>Requires specialized skills (data analysts only)</li><li>IT bottleneck for every new calculation</li>
</ul><p class="content-section__paragraph"><strong>Real-World Impact</strong>: A business analyst who knows VLOOKUP and SUMIFS can do in Scoop what would require a data analyst writing complex ETL transformations in Domo.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">2.3 ML & Pattern Discovery</h3><p class="content-section__paragraph">When you ask Scoop to find patterns in your data, Scoop runs real machine learning models and explains results in business language. Domo has AutoML capabilities but uses black-box models without explanation.</p><p class="content-section__paragraph"><strong>Core Question</strong>: Can users discover insights they didn't know to look for, explained in business language?</p><h4 class="content-section__heading">Scoop's AI Data Scientist Architecture</h4><p class="content-section__paragraph"><strong>The Three-Layer System</strong> (Unique to Scoop):</p><ol class="content-section__list">
<li><strong>Automatic Data Preparation</strong>: Cleaning, binning, feature engineering - all invisible to user</li><li><strong>Explainable ML Models</strong>: J48 decision trees, JRip rule mining, EM clustering</li><li><strong>AI Explanation Layer</strong>: Analyzes verbose model output, translates to business language</li>
</ol><p class="content-section__paragraph"><strong>Why This Matters</strong>: Domo has real AutoML but uses black-box models that dump technical output on users. Scoop does real data science work automatically, then explains it like a human analyst would.</p><h4 class="content-section__heading">ML Capabilities Comparison</h4>
<table class="content-section__table">
<thead>
<tr>
<th>ML Capability</th><th>Domo</th><th>Scoop</th><th>Key Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Data Prep</td><td>Limited (requires ETL setup)</td><td>Cleaning, binning, feature engineering</td><td>Runs automatically</td>
</tr>
<tr>
<td>Decision Trees</td><td>Not documented</td><td>J48 algorithm (multi-level)</td><td>Explainable, not black box</td>
</tr>
<tr>
<td>Rule Mining</td><td>Not documented</td><td>JRip association rules</td><td>Pattern discovery</td>
</tr>
<tr>
<td>Clustering</td><td>K-Means (black box)</td><td>EM clustering with explanation</td><td>Segment identification</td>
</tr>
<tr>
<td>AI Explanation</td><td>Minimal (technical output)</td><td>Interprets model output for business users</td><td>Critical differentiator</td>
</tr>
<tr>
<td>Data Scientist Needed</td><td>Yes for model interpretation</td><td>No - fully automated</td><td>Complete workflow</td>
</tr>
</tbody>
</table>
<h4 class="content-section__heading">Example: AI Data Scientist in Action</h4><p class="content-section__paragraph"><strong>Business Question</strong>: "What factors predict customer churn?"</p><p class="content-section__paragraph"><strong>Domo Approach</strong>:</p><pre class="content-section__code"><code>AutoML Analysis Available:
"K-Means clustering identifies 3 customer segments based on usage patterns.
Model accuracy: 87% prediction rate.
Key features: login_frequency, support_tickets, contract_value.
Statistical significance: p < 0.05"
[Provides technical model output without business interpretation]</code></pre><p class="content-section__paragraph"><strong>Scoop's Three-Layer Process</strong>:</p><p class="content-section__paragraph"><strong>Layer 1: Automatic Data Prep</strong> (Invisible to user)</p><ul class="content-section__list">
<li>Cleaned 12,432 customer records</li><li>Binned continuous variables (tenure, usage, support metrics)</li><li>Handled missing values automatically</li><li>Created derived features (usage trends, engagement scores)</li><li>Normalized scales for model input</li>
</ul><p class="content-section__paragraph"><strong>Layer 2: J48 Decision Tree Execution</strong> (Raw model output - too verbose)</p><pre class="content-section__code"><code>J48 Decision Tree (12 levels deep, 847 nodes):
Node 1: support_tickets
| <= 1: [Node 2]
| | tenure <= 6: [Node 3]
| | | last_login <= 7: LOW_RISK (n=1,234, 3% churn)
| | | last_login > 7: [Node 4]
| | | | feature_adoption <= 0.3: MED_RISK (n=445, 38% churn)
| | | | feature_adoption > 0.3: [Node 5]
| | | | nps_score <= 6: [Node 6]...
| | tenure > 6: [Node 15]
| | feature_adoption <= 0.5: [Node 16]...
| > 1 AND <= 3: [Node 89]
| | last_login <= 14: [Node 90]...
| > 3: [Node 234]
| | tenure <= 6: HIGH_RISK (n=342, 89% churn)
| | tenure > 6 AND <= 12: [Node 235]...
[... 835 more nodes with nested conditions ...]</code></pre><p class="content-section__paragraph"><em>This is explainable (not a black box) but far too complex for business users to parse</em></p><p class="content-section__paragraph"><strong>Layer 3: AI Explanation</strong> (What the user actually sees)</p><pre class="content-section__code"><code>CHURN PREDICTION ANALYSIS
I analyzed 12,432 customers using decision tree modeling and found 3 clear risk profiles:
🔴 HIGH-RISK CUSTOMERS (342 customers, 89% churn rate):
Pattern: More than 3 support tickets + inactive for 30+ days + new customers (<6 months)
Why they churn: Early frustration without successful onboarding
Action: Immediate personal outreach + dedicated success manager
Expected impact: Can save 60-70% with intervention
🟡 MEDIUM-RISK CUSTOMERS (1,847 customers, 43% churn rate):
Pattern: Low contract value (<$5K) + low feature adoption (<30%) + neutral NPS (≤6)
Why they churn: Not seeing value, haven't adopted key features
Action: Training program + feature onboarding + check-in calls
Expected impact: Can reduce churn by 40-50%
🟢 LOW-RISK CUSTOMERS (2,156 customers, 3% churn rate):
Pattern: Long tenure (>24 months) + high adoption (>80%) + promoter NPS (≥8)
Why they stay: Embedded in workflows, getting value
Action: Upsell opportunity for premium features
Expected impact: 25-30% upsell conversion potential
KEY INSIGHT: Support ticket volume is the #1 predictor (45% of model influence).
Customers with >3 tickets churn at 8x the rate of those with ≤1 ticket.
VALIDATION: This model correctly predicts churn 91% of the time on historical data.</code></pre><p class="content-section__paragraph"><strong>The Scoop Difference</strong>:</p><ul class="content-section__list">
<li><strong>Domo</strong>: Real ML but black box, requires data scientist to interpret raw output</li><li><strong>Scoop</strong>: Real data science (J48 trees) + AI explains it in business language</li><li><strong>Result</strong>: Business users get PhD-level analysis explained like a consultant would</li>
</ul><h4 class="content-section__heading">Example: ML_CLUSTER (Automatic Segmentation)</h4><p class="content-section__paragraph"><strong>Business Question</strong>: "How should we segment our customer base?"</p><p class="content-section__paragraph"><strong>Scoop's Three-Layer Process</strong>:</p><p class="content-section__paragraph"><strong>Layer 1: Automatic Data Prep</strong> (Invisible to user)</p><ul class="content-section__list">
<li>Normalized 47 customer behavior metrics</li><li>Handled different scales (login frequency, revenue, usage)</li><li>Removed correlated features automatically</li><li>Prepared for EM clustering algorithm</li>
</ul><p class="content-section__paragraph"><strong>Layer 2: EM Clustering Execution</strong> (Raw model output)</p><pre class="content-section__code"><code>EM Clustering Results:
K=4 clusters optimal (BIC score: -34,521, AIC: -34,389)
Cluster 1 (n=1,607, 18%):
- login_freq: μ=6.8 σ=0.4 (daily)
- query_volume: μ=54.2 σ=12.1
- integration_count: μ=3.2 σ=0.8
- revenue_normalized: μ=2.8 σ=0.6 (high)
- retention_prob: 0.95
Cluster 2 (n=3,033, 34%):
- login_freq: μ=1.2 σ=0.3 (weekly)
- query_volume: μ=14.6 σ=5.2
- integration_count: μ=1.1 σ=0.4
- revenue_normalized: μ=1.2 σ=0.4 (medium)
- retention_prob: 0.72
[... statistical details for Clusters 3 & 4 ...]</code></pre><p class="content-section__paragraph"><em>Statistically valid but incomprehensible to business users</em></p><p class="content-section__paragraph"><strong>Layer 3: AI Explanation</strong> (What the user actually sees)</p><pre class="content-section__code"><code>CUSTOMER SEGMENTATION ANALYSIS
I discovered 4 natural customer segments in your base:
💎 POWER USERS (1,607 customers, 18% of base, 42% of revenue):
Behavior: Daily logins, 50+ queries/week, 3+ integrations
Value: $2.8M ARR, 95% retention rate
Strategy: Protect at all costs - introduce premium features
Risk: Losing even 5% = $140K revenue impact
⚡ STEADY USERS (3,033 customers, 34% of base, 28% of revenue):
Behavior: Weekly logins, 10-20 queries/week, 1 integration
Value: $1.9M ARR, 72% retention rate
Opportunity: Move 10% to Power Users = $190K ARR gain
Strategy: Training programs + feature adoption campaigns
⚠️ AT-RISK (4,281 customers, 48% of base, 30% of revenue):
Behavior: Monthly or less logins, <5 queries/month, no integrations
Value: $2.0M ARR, 45% retention rate (losing $900K/year)
Urgent: High churn probability
Strategy: 90-day re-engagement campaign or proactive sunset
RECOMMENDATION: Focus resources on protecting Power Users (highest value density)
and converting Steady Users (highest growth potential).</code></pre><p class="content-section__paragraph"><strong>Domo Equivalent</strong>: Has K-Means clustering but provides technical statistics without business interpretation</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">2.4 Setup & Implementation</h3><p class="content-section__paragraph"><strong>Core Question</strong>: How long until users are productive?</p><h4 class="content-section__heading">Implementation Timeline Comparison</h4><p class="content-section__paragraph"><strong>Domo Implementation:</strong></p>
<table class="content-section__table">
<thead>
<tr>
<th>Week</th><th>Activity</th><th>Resource Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td><td>Account setup, connector configuration</td><td>IT team + account executive</td>
</tr>
<tr>
<td>3-5</td><td>Data modeling, cards/datasets creation</td><td>Data analysts + business analysts</td>
</tr>
<tr>
<td>6-8</td><td>Dashboard building, AI Readiness metadata</td><td>IT team + business stakeholders</td>
</tr>
<tr>
<td>9-12</td><td>Testing, validation, user training</td><td>IT team + trainers</td>
</tr>
<tr>
<td>13-14</td><td>User rollout, adoption support</td><td>Change management team</td>
</tr>
<tr>
<td><strong>Total</strong></td><td><strong>14 weeks</strong></td><td><strong>2-3 FTE for 3-4 months</strong></td>
</tr>
</tbody>
</table>
<p class="content-section__paragraph"><strong>Scoop Implementation:</strong></p>
<table class="content-section__table">
<thead>
<tr>
<th>Time</th><th>Activity</th><th>Resource Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-30 sec</td><td>Sign up, connect data source</td><td>Self-service</td>
</tr>
<tr>
<td>30 sec - 5 min</td><td>Ask first business question, get answer</td><td>Business user only</td>
</tr>
<tr>
<td><strong>Total</strong></td><td><strong>30 seconds</strong></td><td><strong>0 IT involvement</strong></td>
</tr>
</tbody>
</table>
<p class="content-section__paragraph"><strong>Time Advantage</strong>: 2,500x faster</p><h4 class="content-section__heading">Prerequisites Comparison</h4>
<table class="content-section__table">
<thead>
<tr>
<th>Requirement</th><th>Domo</th><th>Scoop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Warehouse</td><td>Preferred (1000+ connectors)</td><td>No (connects directly)</td>
</tr>
<tr>
<td>Data Modeling</td><td>Yes (cards/datasets structure)</td><td>None</td>
</tr>
<tr>
<td>Semantic Layer</td><td>Yes (AI Readiness metadata)</td><td>None</td>
</tr>
<tr>
<td>ETL Pipelines</td><td>Magic ETL required</td><td>None</td>
</tr>
<tr>
<td>Technical Team</td><td>IT + data analysts</td><td>None</td>
</tr>
<tr>
<td>Training Program</td><td>1-2 weeks (multiple tools)</td><td>None (Excel skills)</td>
</tr>
</tbody>
</table>
<h4 class="content-section__heading">Real Customer Implementation Stories</h4><p class="content-section__paragraph"><strong>Domo Implementation (from G2 reviews)</strong>:</p><blockquote class="content-section__quote">"Implementation took 3 months with extensive IT involvement. Had to learn Workbench, Analyzer, and multiple interfaces. Business users found it complicated initially."
- Company: Mid-market manufacturing
- Timeline: 12-14 weeks actual
- Challenges: Multiple tool complexity, training overhead</blockquote><p class="content-section__paragraph"><strong>Scoop Implementation (from case studies)</strong>:</p><blockquote class="content-section__quote">"Connected Salesforce in 30 seconds, asked 'Why are Q4 deals slower?' and got root cause analysis immediately. Team was productive from day one."
- Company: SaaS startup
- Timeline: 30 seconds to first insight
- Result: Zero training needed, immediate adoption</blockquote><h4 class="content-section__heading">Smart Scanner for Messy Data</h4><p class="content-section__paragraph"><strong>What Smart Scanner Solves</strong>: Upload messy Excel files, Scoop figures out the structure automatically.</p><p class="content-section__paragraph"><strong>Domo Requirement</strong>: Data must be clean, structured through Workbench preprocessing. Magic ETL handles some cleanup but requires configuration.</p><p class="content-section__paragraph"><strong>Common Data Problems That Break Competitors</strong>:</p><ul class="content-section__list">
<li>Embedded subtotals (Sum rows mixed with data rows)</li><li>Multiple header rows</li><li>Merged cells with hierarchical structure</li><li>Mixed data types in columns</li><li>Currency symbols and formatting ($1,234.56)</li><li>Date formats that vary (12/31/24 vs Dec 31, 2024)</li><li>Notes and comments embedded in data</li><li>Irregular file structures (pivot-table-like layouts)</li>
</ul><p class="content-section__paragraph"><strong>Scoop's Smart Scanner Handles</strong>:</p><pre class="content-section__code"><code>Upload messy Excel file → Smart Scanner detects:
1. Structure: Identifies where headers are, even if multiple rows
2. Data types: Recognizes numbers despite $ and , formatting
3. Subtotals: Excludes embedded sum/total rows automatically
4. Hierarchies: Understands merged cells and indentation
5. Anomalies: Flags outliers and missing values
6. Formats: Parses dates regardless of format variation
Result: Ready to analyze in seconds, no data prep required</code></pre><p class="content-section__paragraph"><strong>Real-World Impact</strong>:</p><ul class="content-section__list">
<li>Finance exports from ERP with embedded subtotals, hierarchies, currency formatting</li><li><strong>Domo</strong>: Data analyst spends 30-60 minutes cleaning file in Workbench</li><li><strong>Scoop</strong>: Smart Scanner handles automatically in 5 seconds</li>
</ul><p class="content-section__paragraph"><strong>Business Impact</strong>:</p><ul class="content-section__list">
<li><strong>Zero data prep time</strong> (analysts work with real-world files)</li><li><strong>No data engineer required</strong> for file cleanup</li><li><strong>Faster insights</strong> (minutes vs hours per analysis)</li>
</ul></div><div class="content-section__subsection"><h3 class="content-section__subtitle">2.5 Schema Evolution & Maintenance</h3><p class="content-section__paragraph"><strong>Core Question</strong>: What happens when your data structure changes?</p><p class="content-section__paragraph"><strong>Why This Section Is Critical</strong>: Schema evolution is the <strong>100% competitor failure point</strong> and Scoop's most defensible moat. Every competitor breaks when data changes; Scoop adapts automatically.</p><h4 class="content-section__heading">The Universal Competitor Weakness</h4>
<table class="content-section__table">
<thead>
<tr>
<th>Data Change Scenario</th><th>Domo Response</th><th>Scoop Response</th><th>Business Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Column added to CRM</strong></td><td>Dashboards break, require rebuild</td><td>Adapts instantly</td><td>Zero downtime</td>
</tr>
<tr>
<td><strong>Data type changes</strong></td><td>2-4 weeks of ETL/dashboard work</td><td>Automatic migration</td><td>No IT burden</td>
</tr>
<tr>
<td><strong>Column renamed</strong></td><td>Cards/datasets rebuild required</td><td>Recognizes automatically</td><td>Continuous operation</td>
</tr>
<tr>
<td><strong>New data source</strong></td><td>Weeks to configure connector/ETL</td><td>Immediate availability</td><td>Same-day insights</td>
</tr>
<tr>
<td><strong>Historical data</strong></td><td>Often lost during migration</td><td>Preserves complete history</td><td>No data loss</td>
</tr>
<tr>
<td><strong>Maintenance burden</strong></td><td>15-20 hours per week</td><td>Zero maintenance</td><td>Frees IT resources</td>
</tr>
</tbody>
</table>
<h4 class="content-section__heading">Real-World Example: CRM Column Addition</h4><p class="content-section__paragraph"><strong>Scenario</strong>: Sales team adds "Deal_Risk_Level" custom field to Salesforce</p><p class="content-section__paragraph"><strong>Domo Experience</strong>:</p><pre class="content-section__code"><code>Day 1: Field added in Salesforce
Day 1: Domo connector doesn't see new field
Day 2: IT team notified, tickets created
Day 3-5: Update connector configuration, ETL
Day 6-8: Rebuild affected cards/datasets
Day 9-10: Update AI Readiness metadata
Day 11-12: QA testing, validation
Day 13-14: Deploy to production</code></pre><p class="content-section__paragraph"><strong>Timeline</strong>: 14 days</p><p class="content-section__paragraph"><strong>Cost</strong>: 24-32 IT hours ($4,800-$6,400 at $200/hr)</p><p class="content-section__paragraph"><strong>Business Impact</strong>: Sales can't use new field for 2 weeks</p><p class="content-section__paragraph"><strong>Scoop Experience</strong>:</p><pre class="content-section__code"><code>Day 1: Field added in Salesforce
Day 1: Scoop sees new field immediately
Day 1: Users can query: "Show me high-risk deals"</code></pre><p class="content-section__paragraph"><strong>Timeline</strong>: Instant</p><p class="content-section__paragraph"><strong>Cost</strong>: $0</p><p class="content-section__paragraph"><strong>Business Impact</strong>: Sales uses new field same day</p><h4 class="content-section__heading">Schema Evolution Cost Analysis</h4><p class="content-section__paragraph"><strong>Annual Cost of Maintenance (100-user org)</strong>:</p>
<table class="content-section__table">
<thead>
<tr>
<th>Item</th><th>Domo</th><th>Scoop</th><th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Engineer FTE for model maintenance</td><td>1 FTE ($180K)</td><td>0 FTE</td><td>$180K</td>
</tr>
<tr>
<td>Emergency schema fixes</td><td>12/year ($5K each)</td><td>0</td><td>$60K</td>
</tr>
<tr>
<td>Delayed feature adoption</td><td>2-4 weeks per change</td><td>Instant</td><td>Opportunity cost</td>
</tr>
<tr>
<td>Dashboard rebuild projects</td><td>4/year ($10K each)</td><td>0</td><td>$40K</td>
</tr>
<tr>
<td><strong>Total Annual Savings</strong></td><td>—</td><td>—</td><td><strong>$280K</strong></td>
</tr>
</tbody>
</table>
<p class="content-section__paragraph"><strong>Typical 3-Year TCO Impact</strong>: $840K savings on maintenance alone</p><h4 class="content-section__heading">Why Competitors Can't Fix This</h4><p class="content-section__paragraph"><strong>Architectural Limitation</strong>: Domo uses cards/datasets and dashboard components that are:</p><ul class="content-section__list">
<li><strong>Pre-defined</strong>: Must specify schema upfront</li><li><strong>Static</strong>: Don't adapt to changes automatically</li><li><strong>Maintained manually</strong>: Requires human intervention</li><li><strong>Fragile</strong>: Break when data evolves</li>
</ul><p class="content-section__paragraph"><strong>Scoop's Architectural Advantage</strong>:</p><ul class="content-section__list">
<li><strong>Dynamic schema detection</strong>: Discovers structure automatically</li><li><strong>Continuous adaptation</strong>: Monitors for changes and adjusts</li><li><strong>Self-healing</strong>: No manual intervention required</li><li><strong>Resilient</strong>: Handles data evolution gracefully</li>
</ul><h4 class="content-section__heading">Business Impact Quantification</h4><p class="content-section__paragraph"><strong>For IT/Data Teams</strong>:</p><ul class="content-section__list">
<li>Eliminate 15-20 hours/week of dashboard maintenance</li><li>Redirect 1 FTE to strategic projects</li><li>Reduce "dashboards are broken" support tickets by 60-80%</li>
</ul><p class="content-section__paragraph"><strong>For Business Users</strong>:</p><ul class="content-section__list">
<li>New data available immediately (not weeks later)</li><li>No "waiting for IT to update the dashboards" delays</li><li>Analysis keeps working as business evolves</li>
</ul><p class="content-section__paragraph"><strong>Strategic Advantage</strong>:</p><ul class="content-section__list">
<li>Adapt to market changes faster (no analytics lag)</li><li>IT team becomes strategic, not reactive</li><li>Business moves at business speed, not IT speed</li>
</ul></div>
</div>
</section>
<section class="content-section " id="3-cost-analysis">
<div class="content-section__container">
<h2 class="content-section__title">3. COST ANALYSIS</h2>
<div class="content-section__subsection"><h3 class="content-section__subtitle">Total Cost of Ownership Comparison</h3><p class="content-section__paragraph"><strong>Key Insight</strong>: Scoop's TCO advantage comes from eliminating 5 of 6 cost categories, not just cheaper software licenses.</p><h4 class="content-section__heading">Year 1 Cost Category Comparison (100 Users)</h4>
<table class="content-section__table">
<thead>
<tr>
<th>Cost Component</th><th>Domo</th><th>Scoop</th><th>Why Scoop Eliminates This</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Software Licenses</strong></td>
</tr>
<tr>
<td>Base platform</td><td>$60K (100 users) + consumption</td><td>Software subscription only</td><td>Transparent pricing model</td>
</tr>
<tr>
<td>Per-user licenses</td><td>Included in consumption model</td><td>Included</td><td>Unlimited viewers included</td>
</tr>
<tr>
<td>Premium features</td><td>All consumption-based</td><td>All included</td><td>No feature gating</td>
</tr>
<tr>
<td><strong>Implementation</strong></td>
</tr>
<tr>
<td>Professional services</td><td>$25K-$50K (3-month project)</td><td><strong>$0</strong></td><td>30-second setup, no data modeling required (architectural)</td>
</tr>
<tr>
<td>Data modeling</td><td>$15K-$25K (cards/datasets)</td><td><strong>$0</strong></td><td>Schema-agnostic design (architectural)</td>
</tr>
<tr>
<td>Integration setup</td><td>$10K-$15K (connectors)</td><td><strong>$0</strong></td><td>Native connectors, zero config (architectural)</td>
</tr>
<tr>
<td><strong>Training</strong></td>
</tr>
<tr>
<td>Initial training</td><td>$10K-$20K (multiple tools)</td><td><strong>$0</strong></td><td>Excel users already know how (capability)</td>
</tr>
<tr>
<td>Certification programs</td><td>$5K-$10K</td><td><strong>$0</strong></td><td>Conversational interface (capability)</td>
</tr>
<tr>
<td>Ongoing training</td><td>$5K annually</td><td><strong>$0</strong></td><td>No new versions to relearn (capability)</td>
</tr>
<tr>
<td><strong>Infrastructure</strong></td>
</tr>
<tr>
<td>Capacity units</td><td>Consumption-based (variable)</td><td>Included</td><td>Cloud-native architecture</td>
</tr>
<tr>
<td>Storage</td><td>Consumption-based</td><td>Included</td><td>Managed service</td>
</tr>
<tr>
<td>Compute</td><td>Consumption-based</td><td>Included</td><td>Serverless design</td>
</tr>
<tr>
<td><strong>Maintenance</strong></td>
</tr>
<tr>
<td>Dashboard updates</td><td>$15K-$30K annually</td><td><strong>$0</strong></td><td>No dashboards to maintain (architectural)</td>
</tr>
<tr>
<td>IT support (ongoing)</td><td>0.5 FTE × $180K</td><td><strong>$0</strong></td><td>Business users work independently (capability)</td>
</tr>
<tr>
<td>Schema change management</td><td>$10K-$20K annually</td><td><strong>$0</strong></td><td>Adapts automatically to schema changes (architectural)</td>
</tr>
<tr>
<td><strong>Hidden Costs</strong></td>
</tr>
<tr>
<td>External consultants</td><td>$20K-$50K annually</td><td><strong>$0</strong></td><td>No specialist dependency (capability)</td>
</tr>
<tr>
<td>Productivity loss during rollout</td><td>$30K-$50K</td><td><strong>$0</strong></td><td>Instant time-to-value (30 seconds)</td>
</tr>
<tr>
<td>Consumption pricing surprises</td><td>"1120% renewal increases"</td><td><strong>$0</strong></td><td>Flat pricing model</td>
</tr>
<tr>
<td><strong>YEAR 1 TOTAL</strong></td><td><strong>$235K-$350K</strong></td><td><strong>Fraction of traditional BI TCO</strong></td><td><strong>Typical: 27x lower TCO</strong></td>
</tr>
</tbody>
</table>
<h4 class="content-section__heading">3-Year TCO Comparison</h4>
<table class="content-section__table">
<thead>
<tr>
<th>Year</th><th>Domo (all categories)</th><th>Scoop (software only)</th><th>TCO Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td><td>$235K-$350K</td><td>Software subscription only</td><td>27x lower</td>
</tr>
<tr>
<td>Year 2</td><td>$120K-$180K (ongoing costs)</td><td>Softwar
e subscription only</td><td>15x lower</td>
</tr>
<tr>
<td>Year 3</td><td>$120K-$180K (ongoing costs)</td><td>Software subscription only</td><td>15x lower</td>
</tr>
<tr>
<td><strong>3-Year Total</strong></td><td><strong>$475K-$710K</strong></td><td><strong>Software × 3 years</strong></td><td><strong>Typical: 20x lower TCO</strong></td>
</tr>
</tbody>
</table>
<p class="content-section__paragraph">Note: Domo ongoing costs include consumption pricing, dashboard maintenance, IT support, and consultant fees. Scoop costs = software subscription only (no additional categories).</p><h4 class="content-section__heading">Hidden Costs Breakdown</h4><p class="content-section__paragraph"><strong>Domo Hidden Costs</strong>:</p><ol class="content-section__list">
<li><strong>Consumption Pricing Explosions</strong></li>
</ol><p class="content-section__paragraph">- Description: Cards/datasets usage drives unpredictable costs</p><p class="content-section__paragraph">- Estimated Cost: "1120% renewal increase" documented case</p><p class="content-section__paragraph">- Frequency: Annual renewals</p><p class="content-section__paragraph">- Source: Customer case studies</p><ol class="content-section__list">
<li><strong>Dashboard Rebuild Projects</strong></li>
</ol><p class="content-section__paragraph">- Description: Schema changes break existing dashboards</p><p class="content-section__paragraph">- Estimated Cost: $10K-$20K per major change</p><p class="content-section__paragraph">- Frequency: 4-6 times per year</p><p class="content-section__paragraph">- Source: IT project documentation</p><ol class="content-section__list">
<li><strong>Multi-Tool Training Overhead</strong></li>
</ol><p class="content-section__paragraph">- Description: Workbench, Analyzer, Magic ETL learning curve</p><p class="content-section__paragraph">- Estimated Cost: $15K-$25K annually (productivity loss)</p><p class="content-section__paragraph">- Frequency: Ongoing (new hires + updates)</p><p class="content-section__paragraph">- Source: Training vendor estimates</p><ol class="content-section__list">
<li><strong>Portal Dependency Productivity Loss</strong></li>
</ol><p class="content-section__paragraph">- Description: Context switching from Excel/Slack to portal</p><p class="content-section__paragraph">- Estimated Cost: 30 minutes/day × 100 users × $50/hour = $65K annually</p><p class="content-section__paragraph">- Frequency: Daily workflow impact</p><p class="content-section__paragraph">- Source: Time-motion studies</p><ol class="content-section__list">
<li><strong>IT Support Overhead</strong></li>
</ol><p class="content-section__paragraph">- Description: Dashboard maintenance, user support, connector issues</p><p class="content-section__paragraph">- Estimated Cost: 0.5-1 FTE ($90K-$180K annually)</p><p class="content-section__paragraph">- Frequency: Ongoing operational requirement</p><p class="content-section__paragraph">- Source: IT staffing benchmarks</p><p class="content-section__paragraph"><strong>Real Customer Example</strong>:</p><blockquote class="content-section__quote">"Domo renewal came in at 1120% increase from previous year. Consumption model made costs unpredictable. Had to factor it into annual budget at 1% of company revenue."
- Company: Mid-market SaaS
- Unexpected Cost: 11x pricing increase
- Source: Documented case study</blockquote><h4 class="content-section__heading">The Cost Elimination Framework</h4><p class="content-section__paragraph"><strong>Traditional BI platforms have 6 cost categories. Scoop has 1.</strong></p><pre class="content-section__code"><code>Traditional BI TCO = Licenses + Implementation + Training + Maintenance + Consultants + Productivity Loss
= 1x + 2-4x + 0.5-2x + 1-2x + 1-3x + 2-4x
= 7.5x - 16x the license cost
Scoop TCO = Software subscription only
= 1x (everything else is $0)</code></pre><p class="content-section__paragraph"><strong>Why the 27x TCO advantage exists</strong>:</p><ol class="content-section__list">
<li><strong>$0 Implementation</strong> (architectural): No data modeling, 30-second setup</li><li><strong>$0 Training</strong> (capability): Excel users already know how to use it</li><li><strong>$0 Maintenance</strong> (architectural): No dashboards to update</li><li><strong>$0 Consultants</strong> (capability): Business users work independently</li><li><strong>$0 Productivity Loss</strong> (capability): Instant time-to-value</li>
</ol><p class="content-section__paragraph"><strong>This advantage is defensible</strong> regardless of software pricing changes because it's based on architectural and capability differences, not pricing decisions.</p><h4 class="content-section__heading">ROI Comparison</h4><p class="content-section__paragraph"><strong>Domo ROI Reality</strong>:</p><ul class="content-section__list">
<li>Year 1 Total Investment: $235K-$350K</li><li>Time to First Value: 14 weeks</li><li>Adoption Rate: 60-70% (complex interface)</li><li>Payback Period: 12-18 months</li><li>Common Issue: Dashboard maintenance creates ongoing costs</li>
</ul><p class="content-section__paragraph"><strong>Scoop ROI Reality</strong>:</p><ul class="content-section__list">
<li>Year 1 Total Investment: Software subscription (no other categories)</li><li>Time to First Value: 30 seconds</li><li>Adoption Rate: 95%+ (Excel-familiar users)</li><li>Payback Period: 3 hours (documented case study)</li><li>Key Advantage: Zero risk of implementation failure or low adoption</li>
</ul></div>
</div>
</section>
<section class="content-section content-section--alt" id="4-use-cases-scenarios">
<div class="content-section__container">
<h2 class="content-section__title">4. USE CASES & SCENARIOS</h2>
<div class="content-section__subsection"><h3 class="content-section__subtitle">When to Choose Scoop</h3><p class="content-section__paragraph"><strong>Scoop is the clear choice when you need</strong>:</p><ol class="content-section__list">
<li><strong>Business User Empowerment</strong></li>
</ol><p class="content-section__paragraph">- Users need answers without IT gatekeeping</p><p class="content-section__paragraph">- Excel skills are your team's strength</p><p class="content-section__paragraph">- Self-service analytics is the goal</p><ol class="content-section__list">
<li><strong>Fast Time-to-Value</strong></li>
</ol><p class="content-section__paragraph">- Need insights today, not in 14 weeks</p><p class="content-section__paragraph">- Cannot dedicate resources to implementation</p><p class="content-section__paragraph">- Agile, experimental approach preferred</p><ol class="content-section__list">
<li><strong>Investigation & Root Cause Analysis</strong></li>
</ol><p class="content-section__paragraph">- "Why" questions are more important than "what"</p><p class="content-section__paragraph">- Need to explore hypotheses dynamically</p><p class="content-section__paragraph">- Root cause analysis is critical</p><ol class="content-section__list">
<li><strong>Cost Efficiency</strong></li>
</ol><p class="content-section__paragraph">- Budget constraints limit options</p><p class="content-section__paragraph">- High ROI expectations</p><p class="content-section__paragraph">- Cannot justify $235K-$350K investment</p><ol class="content-section__list">
<li><strong>Workflow Integration</strong></li>
</ol><p class="content-section__paragraph">- Work happens in Excel, Slack, PowerPoint</p><p class="content-section__paragraph">- Need analytics embedded in daily tools</p><p class="content-section__paragraph">- Excel formulas with live data required</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">When Domo Might Fit</h3><p class="content-section__paragraph"><strong>Consider Domo if</strong>:</p><ol class="content-section__list">
<li><strong>Dashboard-First Architecture Preference</strong></li>
</ol><p class="content-section__paragraph">- Specifically want portal-based BI platform</p><p class="content-section__paragraph">- IT team comfortable maintaining dashboard ecosystem</p><p class="content-section__paragraph">- Note: Excel formulas will be disabled, portal dependency required</p><ol class="content-section__list">
<li><strong>Enterprise Dashboard Governance Required</strong></li>
</ol><p class="content-section__paragraph">- Need #1 Dresner-rated dashboard platform</p><p class="content-section__paragraph">- Complex visualization requirements justify portal approach</p><p class="content-section__paragraph">- Note: Accept 27x higher TCO and 14-week implementation</p><p class="content-section__paragraph"><strong>Reality Check</strong>: <5% of companies find Domo's strength areas actually apply to their needs when cost and workflow impact are considered.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Department-by-Department Fit</h3>
<table class="content-section__table">
<thead>
<tr>
<th>Department</th><th>Domo Fit</th><th>Scoop Fit</th><th>Key Differentiator</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Finance</strong></td><td>Poor - Excel formulas disabled</td><td>Excellent - Spreadsheet engine for complex FP&A calculations, variance analysis</td><td>Excel skills at scale</td>
</tr>
<tr>
<td><strong>Sales</strong></td><td>Poor - Portal dependency breaks workflow</td><td>Excellent - Personal Decks for pipeline tracking, ML deal scoring, CRM writeback</td><td>Self-service + ML</td>
</tr>
<tr>
<td><strong>Marketing</strong></td><td>Limited - Dashboard narration only</td><td>Excellent - ML_CLUSTER for customer segmentation, attribution analysis</td><td>Hidden segment discovery</td>
</tr>
<tr>
<td><strong>Customer Success</strong></td><td>Limited - No investigation capability</td><td>Excellent - Churn prediction with ML_RELATIONSHIP, proactive risk identification</td><td>Predictive + actionable</td>
</tr>
</tbody>
</table>
</div><div class="content-section__subsection"><h3 class="content-section__subtitle">Migration Considerations</h3><p class="content-section__paragraph"><strong>Migrating from Domo to Scoop</strong>:</p>
<table class="content-section__table">
<thead>
<tr>
<th>Aspect</th><th>Complexity</th><th>Timeline</th><th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Migration</td><td>Low</td><td>1 day</td><td>Same connectors, no dashboard dependencies</td>
</tr>
<tr>
<td>User Training</td><td>Low</td><td>0 days</td><td>Excel skills transfer directly</td>
</tr>
<tr>
<td>Report Recreation</td><td>Low</td><td>1-2 weeks</td><td>Investigation replaces dashboard narration</td>
</tr>
<tr>
<td>Integration Updates</td><td>Low</td><td>1 day</td><td>Native Excel/Slack vs manual exports</td>
</tr>
<tr>
<td>Change Management</td><td>Low</td><td>2 weeks</td><td>Easier tool = easier adoption</td>
</tr>
</tbody>
</table>
<p class="content-section__paragraph"><strong>Common Migration Path</strong>:</p><ol class="content-section__list">
<li>Pilot with one department (Week 1)</li><li>Expand to power users (Week 2-3)</li><li>Roll out company-wide (Week 4)</li><li>Deprecate Domo (Month 2-3)</li>
</ol></div>
</div>
</section>
<section class="content-section " id="6-frequently-asked-questions">
<div class="content-section__container">
<h2 class="content-section__title">6. FREQUENTLY ASKED QUESTIONS</h2>
<div class="content-section__subsection"><h3 class="content-section__subtitle">Implementation & Setup</h3><p class="content-section__paragraph"><strong>Q: How long does Scoop implementation really take?</strong></p><p class="content-section__paragraph">A: 30 seconds. Connect data source, ask first question, get answer immediately. Domo takes 14 weeks with IT team, data modeling, and multi-tool training.</p><p class="content-section__paragraph"><strong>Q: Do we need to build a data model for Scoop?</strong></p><p class="content-section__paragraph">A: No. Scoop works directly on raw data with automatic schema detection. Domo requires cards/datasets modeling and AI Readiness metadata configuration.</p><p class="content-section__paragraph"><strong>Q: What about Domo - how long is their implementation?</strong></p><p class="content-section__paragraph">A: 1-2 months average with account executive and customer service rep, plus IT for connector configuration. Multiple tools (Workbench, Analyzer) require training.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Capabilities & Features</h3><p class="content-section__paragraph"><strong>Q: Can Scoop do dashboard creation like Domo?</strong></p><p class="content-section__paragraph">A: Scoop focuses on investigation and automatic presentation generation rather than dashboard building. Personal Decks in Slack provide dashboard-like functionality without IT dependency.</p><p class="content-section__paragraph"><strong>Q: Does Scoop support Excel formulas like Domo?</strong></p><p class="content-section__paragraph">A: Yes, 150+ functions including VLOOKUP, SUMIFS, INDEX/MATCH. Domo "disables any formulas in Excel files before export" for security. Complete list: VLOOKUP, SUMIFS, INDEX/MATCH, XLOOKUP, etc.</p><p class="content-section__paragraph"><strong>Q: Can Scoop investigate "why" questions or just answer "what"?</strong></p><p class="content-section__paragraph">A: Scoop performs multi-pass investigation with hypothesis testing for "why" questions. Domo provides dashboard narration and AI Chat descriptions of existing data.</p><p class="content-section__paragraph"><strong>Q: Can Domo handle complex analytical questions like "show top performers by calculated metric"?</strong></p><p class="content-section__paragraph">A: Limited. Questions like "show opportunities from top 5 sales reps by win rate" require pre-built dashboard components with custom calculations (1-2 weeks IT work). In Domo, IT must build cards/datasets with these metrics before business users can query them. Scoop handles these automatically via subquery generation—no pre-work needed.</p><p class="content-section__paragraph"><strong>Q: What ML algorithms does Scoop use?</strong></p><p class="content-section__paragraph">A: J48 decision trees, JRip rule mining, EM clustering—all with explainable outputs. Domo has AutoML with K-Means clustering but provides black-box results without business interpretation.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Cost & ROI</h3><p class="content-section__paragraph"><strong>Q: What's the real cost of Domo for 100 users?</strong></p><p class="content-section__paragraph">A: $235K-$350K Year 1 including implementation ($25K-$50K) + training ($10K-$20K) + consumption pricing + maintenance ($15K-$30K) + 1120% renewal increases documented. Hidden costs include dashboard rebuild projects and portal productivity loss.</p><p class="content-section__paragraph"><strong>Q: How much does Scoop cost compared to Domo?</strong></p><p class="content-section__paragraph">A: Fraction of traditional BI TCO. Scoop eliminates 5 of 6 cost categories (implementation, training, maintenance, consultants, productivity loss). 27x lower total cost of ownership.</p><p class="content-section__paragraph"><strong>Q: What's the ROI timeline for Scoop?</strong></p><p class="content-section__paragraph">A: Payback in 3 hours (documented). Domo payback: 12-18 months.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Integration & Workflow</h3><p class="content-section__paragraph"><strong>Q: Can Scoop integrate with Salesforce?</strong></p><p class="content-section__paragraph">A: Yes, native connector with CRM writeback for ML scores. 30-second setup vs weeks for Domo connector configuration.</p><p class="content-section__paragraph"><strong>Q: Does Scoop work in Excel like Domo?</strong></p><p class="content-section__paragraph">A: Better integration. Scoop supports 150+ Excel functions with live data. Domo has Windows-only plugin but "disables any formulas in Excel files before export" for security.</p><p class="content-section__paragraph"><strong>Q: Can we use Scoop in Slack?</strong></p><p class="content-section__paragraph">A: Yes, native Slack bot with full investigation capabilities and Personal Decks. Domo has no native Slack integration (requires third-party tools like Workato).</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Technical & Security</h3><p class="content-section__paragraph"><strong>Q: Does Scoop meet our security/compliance requirements?</strong></p><p class="content-section__paragraph">A: Enterprise-grade security with SOC 2 compliance. Domo also provides enterprise security but disables Excel formulas "for security" creating workflow gaps.</p><p class="content-section__paragraph"><strong>Q: How does Scoop handle schema changes?</strong></p><p class="content-section__paragraph">A: Automatic adaptation with zero downtime. Domo dashboards break when underlying data changes, requiring dashboard rebuilds (typical: 2-4 weeks per major change).</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Framework & Scoring</h3><p class="content-section__paragraph"><strong>Q: What is the BUA Score and what does it measure?</strong></p><p class="content-section__paragraph">A: BUA (Business User Autonomy) Score measures how independently non-technical business users can work across 5 dimensions: Autonomy (self-service without IT), Flow (working in existing tools), Understanding (deep insights without analysts), Presentation (professional output without designers), and Data (all data ops without engineers). It's positioned as Gartner's missing 5th analytics category—beyond traditional BI. Scoop scores 82/100, Domo scores 62/100.</p><p class="content-section__paragraph"><strong>Q: Why does Domo score 62/100 when it's #1 in Dresner study?</strong></p><p class="content-section__paragraph">A: Domo optimizes for dashboard creation, enterprise governance, and IT control (Gartner's Categories 1-4). BUA measures business user independence—a different architecture goal. Domo excels at visualization but requires portal dependency and disables Excel formulas. Both are valid; the question is which your organization needs.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Decision-Making</h3><p class="content-section__paragraph"><strong>Q: When should we choose Domo over Scoop?</strong></p><p class="content-section__paragraph">A: Consider Domo if you specifically need dashboard-first architecture with portal-based governance and can accept 27x higher TCO, Excel formula disabling, and 14-week implementation. Reality: <5% of companies find this trade-off worthwhile.</p><p class="content-section__paragraph"><strong>Q: What if we're already invested in Domo?</strong></p><p class="content-section__paragraph">A: Sunk cost shouldn't drive future decisions. Domo's ongoing costs ($120K-$180K annually) plus productivity loss from portal dependency often justify migration within 6 months.</p><p class="content-section__paragraph"><strong>Q: Can we try Scoop before committing?</strong></p><p class="content-section__paragraph">A: Yes, 30-second setup allows immediate evaluation with your actual data. Compare side-by-side with Domo dashboards for investigation capabilities.</p></div>
</div>
</section>
<section class="content-section content-section--alt" id="7-next-steps">
<div class="content-section__container">
<h2 class="content-section__title">7. NEXT STEPS</h2>
<div class="content-section__subsection"><h3 class="content-section__subtitle">Get Started with Scoop</h3><p class="content-section__paragraph"><strong>Option 1: Self-Serve Trial</strong></p><ul class="content-section__list">
<li>Sign up: <a href="https://scoop.analytics" style="color: #4763F5; text-decoration: underline;">scoop.analytics</a></li><li>Connect your data source</li><li>Ask your first question</li><li>Time required: 30 seconds</li>
</ul><p class="content-section__paragraph"><strong>Option 2: Guided Demo</strong></p><ul class="content-section__list">
<li>See Scoop with your actual data</li><li>Compare side-by-side with Domo</li><li>Get migration roadmap</li><li>Schedule: <a href="https://demo.scoop.analytics" style="color: #4763F5; text-decoration: underline;">demo.scoop.analytics</a></li>
</ul><p class="content-section__paragraph"><strong>Option 3: Migration Assessment</strong></p><ul class="content-section__list">
<li>Free analysis of your Domo usage</li><li>Custom migration plan</li><li>ROI calculation for your team</li><li>Request: <a href="https://migrate.scoop.analytics" style="color: #4763F5; text-decoration: underline;">migrate.scoop.analytics</a></li>
</ul></div>
</div>
</section>
<section class="cta-section">
<div style="max-width: 800px; margin: 0 auto;">
<h2 class="cta-section__title">Ready to see the difference?</h2>
<p class="cta-section__subtitle">See why teams choose Scoop over Domo</p>
<a href="https://www.scoopanalytics.com/demo" class="btn--white">Start Free Trial</a>
</div>
</section>
<script src="https://unpkg.com/lucide@latest"></script>
<script src="https://cdn.jsdelivr.net/npm/mermaid@10/dist/mermaid.min.js"></script>
<script>
lucide.createIcons();
mermaid.initialize({
startOnLoad: true,
theme: 'base',
themeVariables: {
primaryColor: '#4763F5',
primaryTextColor: '#130417',
primaryBorderColor: '#4763F5',
lineColor: '#4763F5',
secondaryColor: '#E3165B',
tertiaryColor: '#f8f9fd'
}
});
</script>