Scoop is now in Slack! Ask questions, get insights—try it free with your team today.
Free Data Tools
AI Chat
AI Chat in Slack
AI Chat on Web

Transform Slack Into Your Data HQ

Upload files or connect your data, then ask questions in plain English. Get charts, ML insights, and answers instantly—all without leaving Slack.

Add Scoop to Slack

Chat Your Way Through the Full Analytics Stack

Connect data sources, discover patterns, predict outcomes—all through conversation

Ask Your First Question
Why Scoop
Product
Free AI Data Tools
How Scoop Works
AI Capabilities
Data sources
Security

Experience Free Data Magic

Free data analysis tools with zero barriers. Click, chat with real data, get insights—no login or setup required.

Explore Tools

AI That Does Data Science

Discover how Agentic Analytics™ automatically runs ML algorithms, finds insights, and creates presentations—all without coding.

See it in action

ML-Powered Insights Without the PhD

Get the same insights data scientists deliver, just by asking questions in plain English

Meet your AI analyst

Data sources

hubspot-small-white.svg

Integrate HubSpot with Scoop to analyze your CRM, marketing, and sales performance data for actionable insights in one view.

goggle-analytics-small-white.svg

Sync Google Analytics with Scoop to track website traffic, conversion rates, and visitor behavior alongside other business metrics.

Canva-small-black.svg

Connect Scoop to your data to create dynamic, interactive presentations with drag-and-drop visualizations that update automatically—no more static screenshots or manual work

google-sheets-small-black.svg

Bring Google Sheets data into Scoop to automatically query datasets, refresh data, and analyze key metrics directly in your spreadsheets. Easily customize and parameterize queries for dynamic, real-time insights.

airtable-small-black.svg

Sync Airtable data with Scoop for project management and organizational insights, making it easier to track team performance.

close-small-black.svg

Connect Close.com with Scoop to track sales activity, pipeline progress, and revenue generation all in one unified platform.

View All Data Sources

Enterprise-Grade Security, Startup-Speed Innovation

SOC 2 Type II certified, encrypted at rest and in transit, with granular access controls

Learn More
AI Data Analyst
AI Chat & Visualization
Segment & Cluster Discovery
Compare Time Periods
Explore Predictors
Explain and Analyze a Group

Your AI Data Scientist

Scoop flips the script on how you analyze data. Instead of searching for a needle in the haystack, Scoop scans your entire dataset—finding what’s changed, what’s driving results, and what patterns you’re missing.

Know more

Chat with your data. Discover what’s really going on

Ask questions in plain English and get answers you can trust—complete with visuals, summaries, and the data behind them.

Know more

Find what’s hiding in your data—before it costs you.

Not everything worth tracking comes with a label. Scoop finds hidden groups in your data—customers with shared behavior, silent churn risks, or breakout segments you didn’t know to look for.

Know more

If you only track KPIs, you're already behind.

See what changed between two periods and why. Scoop analyzes your entire dataset to explain the shifts in behavior, not just the metrics that moved.

Know more

Find what’s influencing your outcomes—before it’s too late.

Pick an outcome—like churn, conversion, or renewal—and Scoop finds what’s driving it. Real machine learning runs behind the scenes to surface the traits that actually matter.

Know more

You know who they are. You just don’t know why they matter.

You know the segment—now find out what defines it. Scoop compares your group to the rest of the dataset to show what makes them tick, in plain language.

Know more
Pricing
Solutions
For Your Team
Marketing

Turn marketing data into insights—without manual reports.

Customer Success

Drive renewals and upsells with AI analytics.

Sales Ops

Turn CRM Data Into Clear Who, Why, and When Answers

For Your Product
Embedded Analytics

Transform any application into an intelligent analytics platform

Customer Success
BI and Analytics
RevOps
Finance
Marketing
Agencies
Cool Ways Teams Are Using Scoop
Education Tech

Supply Chain Platforms

HR/People Tech

Financial Services

Healthcare

SaaS and Tech

Professional Services

Manufacturing

Retail

Financial Services

Healthcare

SaaS and Tech

E-commerce

Financial Services

Healthcare

SaaS and Tech

Media & Advertising

Professional Services

E-commerce

Manufacturing

Retail

Financial Services

Healthcare

SaaS and Tech

E-commerce

Retail

Financial Services

Healthcare

SaaS and Tech

Media & Advertising

E-commerce

Fractional CFO's

Marketing Analytics

Social Media

Marketing Agency

Rev Analytics Agency

E-commerce

Resources
Blog
White Papers
One Pager
Case Studies
Marketplace Partners

Trusted Scoop integrations built through official partnerships with leading platforms.

Comparisons

Compare Scoop to other data analytics solutions.

Docs

Find guides and resources to maximize your use of Scoop..

The Inside Scoop

Expert insights, podcasts, and stories on analytics.

Get StartedRequest Demo
Get Started
Log in
<!-- SEO-HIDDEN: This content is for search engines --> <div style="position: absolute !important; left: -99999px !important; width: 1px !important; height: 1px !important; overflow: hidden !important; opacity: 0 !important; pointer-events: none !important; user-select: none !important;"> <h1>Tableau Pulse vs Scoop Analytics - Complete Comparison Guide</h1> <p><strong>Tableau Pulse scores 37/100 on the Business User Autonomy Framework, while Scoop Analytics scores 82/100.</strong> This comprehensive comparison reveals why teams choose Scoop over Tableau Pulse for business intelligence and analytics.</p> <h2>Quick Comparison: Tableau Pulse vs Scoop Analytics</h2> <ul> <li><strong>Setup Time:</strong> Tableau Pulse requires 2-4 weeks with IT setup, Scoop takes 30 seconds</li> <li><strong>User Access:</strong> Tableau Pulse requires portal login, Scoop works in Slack/Teams</li> <li><strong>Query Capability:</strong> Tableau Pulse offers single-level queries, Scoop provides 3-10 levels deep</li> <li><strong>Data Preparation:</strong> Tableau Pulse needs IT for modeling, Scoop is automatic</li> <li><strong>Learning Curve:</strong> Tableau Pulse requires training, Scoop uses natural language</li> <li><strong>Collaboration:</strong> Tableau Pulse limited to portal, Scoop native in collaboration tools</li> <li><strong>Cost Model:</strong> Tableau Pulse has per-user licensing, Scoop offers flexible pricing</li> </ul> <h2>Business User Autonomy (BUA) Framework Analysis</h2> <h3>Dimension 1: Discovery - How Users Find Insights</h3> <p>Tableau Pulse scores low on discovery (8/32) because users must know what to look for in advance. They need to navigate through dashboards, understand data models, and know which reports contain the answers. Scoop scores 28/32 by allowing users to ask questions naturally and discover insights they didn't know existed.</p> <h3>Dimension 2: Fluency - Natural Interaction with Data</h3> <p>Tableau Pulse scores 10/35 on fluency due to its technical interface requiring SQL knowledge or dashboard navigation skills. Scoop scores 30/35 by accepting questions in plain English like "What caused our sales drop last quarter?" and providing instant answers.</p> <h3>Dimension 3: Understanding - Deep Analysis Capability</h3> <p>Tableau Pulse scores 7/33 on understanding because users can't easily dig deeper into results. They're limited to predefined drill-downs and can't ask follow-up questions. Scoop scores 24/33 by enabling iterative questioning, allowing users to explore data naturally with unlimited follow-ups.</p> <h2>Why Organizations Choose Scoop Over Tableau Pulse</h2> <h3>1. True Self-Service Analytics</h3> <p>While Tableau Pulse claims self-service, users still depend on IT for new data sources, dashboard creation, and data model changes. Scoop delivers true self-service where business users can explore any connected data without technical assistance.</p> <h3>2. No Portal Fatigue</h3> <p>Tableau Pulse requires users to log into yet another portal, remember another password, and learn another interface. Scoop eliminates portal fatigue by working directly in Slack and Microsoft Teams where teams already collaborate.</p> <h3>3. Faster Time to Insight</h3> <p>With Tableau Pulse, getting an answer involves logging in, finding the right dashboard, applying filters, and interpreting visualizations. With Scoop, users simply ask a question and get an answer in seconds, reducing time to insight by 90%.</p> <h3>4. Lower Total Cost of Ownership</h3> <p>Tableau Pulse requires expensive per-user licenses, training costs, and ongoing IT support for dashboard maintenance. Scoop reduces TCO with flexible pricing, no training requirements, and zero maintenance overhead.</p> <h3>5. Better Adoption Rates</h3> <p>Typical Tableau Pulse deployments see 10-20% adoption rates because most users find it too complex. Scoop achieves 70-90% adoption because anyone who can type a question can use it effectively.</p> <h2>Common Migration Scenarios from Tableau Pulse to Scoop</h2> <h3>Scenario 1: Augmenting Existing BI</h3> <p>Many organizations keep Tableau Pulse for complex reporting while adding Scoop for day-to-day business questions. This hybrid approach maximizes existing investments while improving accessibility.</p> <h3>Scenario 2: Full Replacement</h3> <p>Organizations frustrated with low adoption and high costs often fully replace Tableau Pulse with Scoop, especially when most users only need answers to questions rather than complex visualizations.</p> <h3>Scenario 3: Departmental Deployment</h3> <p>Sales, marketing, and customer success teams often adopt Scoop independently when Tableau Pulse doesn't meet their need for quick, iterative analysis.</p> <h2>Technical Comparison</h2> <h3>Data Connectivity</h3> <p>Tableau Pulse connects to data sources but requires IT configuration and maintenance. Scoop offers one-click connections to 100+ data sources with automatic schema detection.</p> <h3>Security and Compliance</h3> <p>Both Tableau Pulse and Scoop offer enterprise security, but Scoop's approach is simpler with automatic PII detection and role-based access that mirrors existing organizational structures.</p> <h3>Scalability</h3> <p>Tableau Pulse can struggle with concurrent users and large datasets. Scoop's cloud-native architecture scales automatically to handle any workload without performance degradation.</p> <h2>Customer Success Stories: Switching from Tableau Pulse to Scoop</h2> <p>Companies report 3x faster decision-making after switching from Tableau Pulse to Scoop. Business users no longer wait for IT to create reports or modify dashboards. They get answers instantly and can explore data independently.</p> <h2>Frequently Asked Questions</h2> <h3>Can Scoop completely replace Tableau Pulse?</h3> <p>Yes, Scoop can replace Tableau Pulse for most business intelligence needs. Organizations requiring pixel-perfect reports or complex visualizations might keep both, but Scoop handles 90% of daily analytics needs more effectively.</p> <h3>How long does migration from Tableau Pulse take?</h3> <p>Migration typically takes 1-2 weeks including data connection, user provisioning, and basic training. This is significantly faster than the months required for Tableau Pulse implementations.</p> <h3>What about our existing Tableau Pulse dashboards?</h3> <p>While Scoop doesn't import Tableau Pulse dashboards directly, it connects to the same data sources. Users can ask questions to get the same insights without needing predefined dashboards.</p> <h3>Is Scoop suitable for enterprise deployment?</h3> <p>Absolutely. Scoop serves Fortune 500 companies with thousands of users, processing millions of queries monthly with enterprise-grade security and compliance.</p> <h2>Conclusion: Tableau Pulse vs Scoop Analytics</h2> <p>While Tableau Pulse remains a capable business intelligence platform, it represents the previous generation of analytics tools that require significant technical expertise and IT involvement. Scoop Analytics represents the future of business intelligence where any user can get answers instantly without technical knowledge or training.</p> <p>The BUA Framework scores tell the story: Tableau Pulse at 37/100 versus Scoop at 82/100. This isn't just a incremental improvement - it's a fundamental shift in how organizations approach data analytics. Scoop eliminates the barriers that prevent business users from accessing insights, delivering true democratization of data.</p> <p>For organizations seeking to empower business users, reduce IT overhead, and accelerate decision-making, Scoop Analytics provides a clear advantage over Tableau Pulse. The combination of natural language processing, collaboration tool integration, and true self-service capabilities makes Scoop the logical choice for modern data-driven organizations.</p> </div> <!-- END SEO-HIDDEN --> <script type="application/ld+json">{"@context":"https://schema.org","@type":"Organization","name":"Scoop Analytics","url":"https://www.scoopanalytics.com","logo":"https://www.scoopanalytics.com/logo.png","sameAs":["https://www.linkedin.com/company/scoop-analytics","https://twitter.com/scoopanalytics"]}</script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"WebPage","name":"Scoop vs Tableau Pulse: Ad-Hoc Analytics vs KPI Monitoring Comparison 2025","description":"Tableau Pulse requires pre-configured metrics that break on schema changes vs Scoop's adaptive AI data analyst. See the TCO breakdown and schema evolution comparison.","dateModified":"2025-10-01T04:10:42.311Z","about":[{"@type":"SoftwareApplication","name":"Scoop Analytics","applicationCategory":"BusinessApplication","aggregateRating":{"@type":"AggregateRating","ratingValue":"82","bestRating":"100","worstRating":"0","ratingExplanation":"Business User Autonomy (BUA) Score"}},{"@type":"SoftwareApplication","name":"Tableau Pulse","applicationCategory":"BusinessApplication","aggregateRating":{"@type":"AggregateRating","ratingValue":"37","bestRating":"100","worstRating":"0","ratingExplanation":"Business User Autonomy (BUA) Score"}}]}</script> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css2?family=Poppins:wght@300;400;500;600;700&display=swap" rel="stylesheet"> <style> * { margin: 0; padding: 0; box-sizing: border-box; } body { font-family: 'Poppins', -apple-system, BlinkMacSystemFont, sans-serif; color: #130417; line-height: 1.6; background: #ffffff; } .hero--balanced { padding: 40px 20px; background: linear-gradient(180deg, #ffffff 0%, #f8f9fd 100%); } .hero__container { max-width: 1200px; margin: 0 auto; display: grid; grid-template-columns: 1.2fr 0.8fr; gap: 80px; align-items: center; } .hero__eyebrow { font-weight: 600; font-size: 14px; color: #4763F5; text-transform: uppercase; letter-spacing: 1px; margin-bottom: 16px; } .hero__title { font-weight: 600; font-size: 46px; line-height: 1.1; color: #130417; margin-bottom: 16px; } .hero__subtitle { font-weight: 400; font-size: 18px; line-height: 1.5; color: #666666; margin-bottom: 24px; } .hero__cta { display: flex; gap: 12px; flex-wrap: wrap; } .btn--primary-balanced { font-weight: 500; font-size: 16px; padding: 14px 28px; background: #4763F5; color: #ffffff; text-decoration: none; border-radius: 8px; display: inline-block; box-shadow: 0 2px 8px rgba(71,99,245,0.2); transition: all 0.2s ease; } .btn--primary-balanced:hover { background: #3651D4; box-shadow: 0 4px 12px rgba(71,99,245,0.3); transform: translateY(-1px); } .btn--secondary-balanced { font-weight: 500; font-size: 16px; padding: 14px 28px; background: #ffffff; color: #4763F5; text-decoration: none; border: 2px solid #4763F5; border-radius: 8px; display: inline-block; transition: all 0.2s ease; } .btn--secondary-balanced:hover { background: #f8f9fd; } .hero__bua-breakdown { background: #ffffff; border-radius: 12px; padding: 24px; box-shadow: 0 4px 16px rgba(0,0,0,0.08); min-width: 320px; } .bua-breakdown__header { display: flex; justify-content: space-between; align-items: center; margin-bottom: 20px; padding-bottom: 16px; border-bottom: 2px solid #f0f0f0; } .bua-breakdown__title { font-weight: 600; font-size: 16px; color: #666666; text-transform: uppercase; letter-spacing: 0.5px; } .bua-breakdown__total { display: flex; align-items: baseline; gap: 6px; } .bua-breakdown__competitor { font-weight: 700; font-size: 32px; color: #E3165B; } .bua-breakdown__vs { font-weight: 500; font-size: 16px; color: #999; } .bua-breakdown__scoop { font-weight: 700; font-size: 32px; color: #4763F5; } .bua-breakdown__max { font-weight: 500; font-size: 20px; color: #666; } .bua-breakdown__dimensions { display: flex; flex-direction: column; gap: 14px; margin-bottom: 16px; } .bua-dimension { display: flex; flex-direction: column; gap: 6px; } .bua-dimension__label { font-weight: 600; font-size: 13px; color: #333; margin-bottom: 2px; } .bua-dimension__bars { display: flex; flex-direction: column; gap: 4px; } .bua-dimension__bar-row { display: flex; align-items: center; gap: 8px; } .bua-dimension__bar { flex: 1; height: 16px; background: #f5f5f5; border-radius: 4px; overflow: hidden; } .bua-dimension__fill { height: 100%; transition: width 0.3s ease; border-radius: 4px; } .bua-dimension__fill--competitor { background: linear-gradient(90deg, #E3165B 0%, #ff4177 100%); } .bua-dimension__fill--scoop { background: linear-gradient(90deg, #4763F5 0%, #5c7cff 100%); } .bua-dimension__value--competitor { font-size: 11px; font-weight: 600; color: #E3165B; min-width: 36px; text-align: right; } .bua-dimension__value--scoop { font-size: 11px; font-weight: 600; color: #4763F5; min-width: 36px; text-align: right; } .bua-breakdown__legend { display: flex; gap: 16px; padding-top: 12px; border-top: 1px solid #f0f0f0; } .bua-legend__item { display: flex; align-items: center; gap: 6px; } .bua-legend__color { width: 12px; height: 12px; border-radius: 2px; } .bua-legend__color--competitor { background: #E3165B; } .bua-legend__color--scoop { background: #4763F5; } .bua-legend__label { font-size: 12px; font-weight: 500; color: #666; } .faq-section { padding: 60px 20px; background: #f8f9fd; } .faq-section__container { max-width: 900px; margin: 0 auto; } .faq-section__title { font-weight: 600; font-size: 36px; text-align: center; color: #130417; margin-bottom: 12px; } .faq-section__subtitle { font-weight: 400; font-size: 18px; text-align: center; color: #666666; margin-bottom: 40px; } .faq-item { background: #ffffff; border-radius: 12px; padding: 28px; margin-bottom: 16px; box-shadow: 0 2px 8px rgba(0,0,0,0.06); transition: all 0.2s ease; } .faq-item:hover { box-shadow: 0 4px 16px rgba(0,0,0,0.1); } .faq-item__question { font-weight: 600; font-size: 18px; color: #130417; margin-bottom: 12px; line-height: 1.4; } .faq-item__answer { font-weight: 400; font-size: 16px; color: #666666; line-height: 1.6; } .toc-section { padding: 30px 20px; background: #ffffff; border-bottom: 1px solid #e5e5e5; } .toc-section__container { max-width: 1200px; margin: 0 auto; } .toc-section__title { font-weight: 600; font-size: 18px; color: #130417; margin-bottom: 16px; } .toc-section__nav { display: grid; grid-template-columns: repeat(auto-fit, minmax(280px, 1fr)); gap: 12px; } .toc-section__link { display: block; padding: 12px 16px; background: #f8f9fd; border-radius: 8px; text-decoration: none; color: #4763F5; font-weight: 500; font-size: 15px; transition: all 0.2s ease; border: 1px solid transparent; } .toc-section__link:hover { background: #ffffff; border-color: #4763F5; transform: translateX(4px); } .feature-grid { padding: 40px 20px 30px; background: #ffffff; } .feature-grid__container { max-width: 1200px; margin: 0 auto; } .feature-grid__title { font-weight: 600; font-size: 36px; text-align: center; color: #130417; margin-bottom: 12px; } .feature-grid__intro { font-weight: 400; font-size: 18px; text-align: center; color: #666666; margin-bottom: 32px; max-width: 600px; margin-left: auto; margin-right: auto; } .feature-grid__items { display: grid; grid-template-columns: repeat(auto-fit, minmax(320px, 1fr)); gap: 32px; } .feature-item { background: #ffffff; border: 1px solid #e5e5e5; border-radius: 12px; padding: 28px; transition: all 0.3s ease; box-shadow: 0 2px 4px rgba(0,0,0,0.04); } .feature-item:hover { border-color: #4763F5; box-shadow: 0 8px 24px rgba(71,99,245,0.15); transform: translateY(-4px); } .feature-item__icon { font-size: 48px; margin-bottom: 16px; } .feature-item__title { font-weight: 600; font-size: 20px; color: #130417; margin-bottom: 20px; } .feature-item__comparison { display: flex; flex-direction: column; gap: 16px; } .feature-item__side { padding: 18px; border-radius: 8px; position: relative; } .feature-item__side--competitor { background: linear-gradient(135deg, #fff5f8 0%, #fef8fa 100%); border-left: 4px solid #E3165B; box-shadow: inset 0 1px 3px rgba(227,22,91,0.05); } .feature-item__side--scoop { background: linear-gradient(135deg, #f0f3ff 0%, #f8f9ff 100%); border-left: 4px solid #4763F5; box-shadow: inset 0 1px 3px rgba(71,99,245,0.08); } .feature-item__value { font-weight: 700; font-size: 26px; margin-bottom: 6px; line-height: 1.2; } .feature-item__side--competitor .feature-item__value { color: #E3165B; } .feature-item__side--scoop .feature-item__value { color: #4763F5; } .feature-item__detail { font-weight: 400; font-size: 14px; color: #666666; } .content-section { padding: 32px 20px; background: #ffffff; } .content-section--alt { background: #f8f9fd; } .content-section__container { max-width: 1000px; margin: 0 auto; } .content-section__title { font-weight: 600; font-size: 36px; color: #130417; margin-bottom: 20px; } .content-section__subsection { margin-bottom: 32px; } .content-section__subtitle { font-weight: 600; font-size: 24px; color: #130417; margin-bottom: 12px; } .content-section__heading { font-weight: 600; font-size: 18px; color: #130417; margin-top: 20px; margin-bottom: 10px; } .content-section__paragraph { font-weight: 400; font-size: 16px; line-height: 1.6; color: #333333; margin-bottom: 12px; } .content-section__table { width: 100%; border-collapse: collapse; margin: 24px 0; background: #ffffff; border-radius: 8px; overflow: hidden; box-shadow: 0 2px 8px rgba(0,0,0,0.06); } .content-section__table th { background: #4763F5; color: #ffffff; font-weight: 600; font-size: 14px; text-align: left; padding: 16px; } .content-section__table td { padding: 14px 16px; border-bottom: 1px solid #e5e5e5; font-size: 14px; } .content-section__table tr:last-child td { border-bottom: none; } .content-section__table tr:hover { background: #f8f9fd; } .content-section__list { margin: 16px 0 16px 24px; } .content-section__list li { margin-bottom: 12px; font-size: 16px; line-height: 1.6; color: #333333; } .content-section__code { background: #f8f9fa; border-radius: 8px; padding: 20px; font-family: 'Courier New', monospace; font-size: 14px; color: #333333; margin: 16px 0; overflow-x: auto; } .content-section__quote { border-left: 4px solid #4763F5; background: #f0f3ff; padding: 20px 24px; margin: 24px 0; border-radius: 4px; font-style: italic; color: #333333; } .screenshot { margin: 60px 0; text-align: center; } .screenshot img { max-width: 100%; height: auto; border-radius: 12px; box-shadow: 0 4px 24px rgba(0,0,0,0.12); transition: transform 0.3s ease; } .screenshot img:hover { transform: scale(1.02); } .screenshot__caption { margin-top: 16px; font-size: 14px; color: #666666; font-style: italic; line-height: 1.5; } .hero__screenshot { margin-top: 40px; } .hero__screenshot img { max-width: 100%; height: auto; border-radius: 12px; box-shadow: 0 8px 32px rgba(0,0,0,0.15); border: 1px solid #e5e5e5; } .hero__screenshot__caption { margin-top: 12px; font-size: 13px; color: #666666; font-style: italic; text-align: center; } .cta-section { padding: 100px 20px; background: linear-gradient(135deg, #4763F5 0%, #3651D4 100%); text-align: center; color: #ffffff; } .cta-section__title { font-weight: 600; font-size: 36px; margin-bottom: 16px; } .cta-section__subtitle { font-weight: 400; font-size: 18px; margin-bottom: 32px; opacity: 0.9; } .btn--white { font-weight: 500; font-size: 16px; padding: 14px 32px; background: #ffffff; color: #4763F5; text-decoration: none; border-radius: 8px; display: inline-block; transition: all 0.2s ease; box-shadow: 0 4px 16px rgba(0,0,0,0.2); } .btn--white:hover { transform: translateY(-2px); box-shadow: 0 6px 20px rgba(0,0,0,0.3); } @media (max-width: 768px) { .hero__container { grid-template-columns: 1fr; gap: 40px; } .hero__title { font-size: 36px; } .feature-grid__items { grid-template-columns: 1fr; } .content-section__title { font-size: 28px; } } </style> <section class="hero hero--balanced"> <div class="hero__container"> <div class="hero__content"> <div class="hero__eyebrow">Competitive Analysis</div> <h1 class="hero__title">Scoop vs Tableau Pulse</h1> <div class="hero__subtitle"> <strong>Choose Scoop if you need:</strong> <ul style="margin-left: 20px; margin-top: 8px;"> <li>Ad-hoc questions without pre-configuration ("show opportunities where deal size > $100K AND win rate > 60%")</li><li>Schema evolution resilience (columns renamed, fields added without breaking analytics)</li><li>Native Excel formulas and PowerPoint generation without third-party tools</li> </ul> <br> <strong>Consider Tableau Pulse if:</strong> <ul style="margin-left: 20px; margin-top: 8px;"> <li>You only need curated KPI monitoring for pre-defined metrics (rare edge case)</li> </ul> </div> <div class="hero__cta"> <a href="https://www.scoopanalytics.com/demo" class="btn--primary-balanced">Try Scoop Free</a> <a href="#comparison" class="btn--secondary-balanced">See Full Comparison</a> </div> </div> <div class="hero__stats"> <div class="hero__bua-breakdown"> <div class="bua-breakdown__header"> <div class="bua-breakdown__title">BUA Score Breakdown</div> <div class="bua-breakdown__total"> <span class="bua-breakdown__competitor">37</span> <span class="bua-breakdown__vs">vs</span> <span class="bua-breakdown__scoop">82</span> <span class="bua-breakdown__max">/100</span> </div> </div> <div class="bua-breakdown__dimensions"> <div class="bua-dimension"> <div class="bua-dimension__label">Autonomy</div> <div class="bua-dimension__bars"> <div class="bua-dimension__bar-row"> <div class="bua-dimension__bar bua-dimension__bar--competitor"> <div class="bua-dimension__fill bua-dimension__fill--competitor" style="width: 15%"></div> </div> <span class="bua-dimension__value--competitor">3/20</span> </div> <div class="bua-dimension__bar-row"> <div class="bua-dimension__bar bua-dimension__bar--scoop"> <div class="bua-dimension__fill bua-dimension__fill--scoop" style="width: 90%"></div> </div> <span class="bua-dimension__value--scoop">18/20</span> </div> </div> </div> <div class="bua-dimension"> <div class="bua-dimension__label">Flow</div> <div class="bua-dimension__bars"> <div class="bua-dimension__bar-row"> <div class="bua-dimension__bar bua-dimension__bar--competitor"> <div class="bua-dimension__fill bua-dimension__fill--competitor" style="width: 20%"></div> </div> <span class="bua-dimension__value--competitor">4/20</span> </div> <div class="bua-dimension__bar-row"> <div class="bua-dimension__bar bua-dimension__bar--scoop"> <div class="bua-dimension__fill bua-dimension__fill--scoop" style="width: 90%"></div> </div> <span class="bua-dimension__value--scoop">18/20</span> </div> </div> </div> <div class="bua-dimension"> <div class="bua-dimension__label">Understanding</div> <div class="bua-dimension__bars"> <div class="bua-dimension__bar-row"> <div class="bua-dimension__bar bua-dimension__bar--competitor"> <div class="bua-dimension__fill bua-dimension__fill--competitor" style="width: 30%"></div> </div> <span class="bua-dimension__value--competitor">6/20</span> </div> <div class="bua-dimension__bar-row"> <div class="bua-dimension__bar bua-dimension__bar--scoop"> <div class="bua-dimension__fill bua-dimension__fill--scoop" style="width: 90%"></div> </div> <span class="bua-dimension__value--scoop">18/20</span> </div> </div> </div> <div class="bua-dimension"> <div class="bua-dimension__label">Presentation</div> <div class="bua-dimension__bars"> <div class="bua-dimension__bar-row"> <div class="bua-dimension__bar bua-dimension__bar--competitor"> <div class="bua-dimension__fill bua-dimension__fill--competitor" style="width: 20%"></div> </div> <span class="bua-dimension__value--competitor">4/20</span> </div> <div class="bua-dimension__bar-row"> <div class="bua-dimension__bar bua-dimension__bar--scoop"> <div class="bua-dimension__fill bua-dimension__fill--scoop" style="width: 80%"></div> </div> <span class="bua-dimension__value--scoop">16/20</span> </div> </div> </div> <div class="bua-dimension"> <div class="bua-dimension__label">Data</div> <div class="bua-dimension__bars"> <div class="bua-dimension__bar-row"> <div class="bua-dimension__bar bua-dimension__bar--competitor"> <div class="bua-dimension__fill bua-dimension__fill--competitor" style="width: 20%"></div> </div> <span class="bua-dimension__value--competitor">4/20</span> </div> <div class="bua-dimension__bar-row"> <div class="bua-dimension__bar bua-dimension__bar--scoop"> <div class="bua-dimension__fill bua-dimension__fill--scoop" style="width: 70%"></div> </div> <span class="bua-dimension__value--scoop">14/20</span> </div> </div> </div> </div> <div class="bua-breakdown__legend"> <div class="bua-legend__item"> <span class="bua-legend__color bua-legend__color--competitor"></span> <span class="bua-legend__label">Tableau Pulse</span> </div> <div class="bua-legend__item"> <span class="bua-legend__color bua-legend__color--scoop"></span> <span class="bua-legend__label">Scoop</span> </div> </div> </div> </div> </div> </section> <section class="feature-grid" id="comparison"> <div class="feature-grid__container"> <h2 class="feature-grid__title">Key Differences at a Glance</h2> <p class="feature-grid__intro">Side-by-side comparison of critical capabilities</p> <div class="feature-grid__items"> <div class="feature-item"> <div class="feature-item__icon" style="color: #4763F5;"> <i data-lucide="bar-chart-3"></i> </div> <h3 class="feature-item__title">Primary Interface</h3> <div class="feature-item__comparison"> <div class="feature-item__side feature-item__side--competitor"> <div class="feature-item__value">Tableau Cloud portal + Slack digests</div> <div class="feature-item__detail">Tableau Cloud portal + Slack digests</div> </div> <div class="feature-item__side feature-item__side--scoop"> <div class="feature-item__value">Natural language chat</div> <div class="feature-item__detail">Natural language chat (Slack, web)</div> </div> </div> </div> <div class="feature-item"> <div class="feature-item__icon" style="color: #4763F5;"> <i data-lucide="bar-chart-3"></i> </div> <h3 class="feature-item__title">Learning Curve</h3> <div class="feature-item__comparison"> <div class="feature-item__side feature-item__side--competitor"> <div class="feature-item__value">Data literacy basics + metric definitions</div> <div class="feature-item__detail">Data literacy basics + metric definitions</div> </div> <div class="feature-item__side feature-item__side--scoop"> <div class="feature-item__value">Conversational—like talking to analyst</div> <div class="feature-item__detail">Conversational—like talking to analyst</div> </div> </div> </div> <div class="feature-item"> <div class="feature-item__icon" style="color: #4763F5;"> <i data-lucide="bar-chart-3"></i> </div> <h3 class="feature-item__title">Simple "What" Questions</h3> <div class="feature-item__comparison"> <div class="feature-item__side feature-item__side--competitor"> <div class="feature-item__value">Pre-configured metrics only</div> <div class="feature-item__detail">Pre-configured metrics only</div> </div> <div class="feature-item__side feature-item__side--scoop"> <div class="feature-item__value">All questions supported</div> <div class="feature-item__detail">All questions supported</div> </div> </div> </div> <div class="feature-item"> <div class="feature-item__icon" style="color: #4763F5;"> <i data-lucide="bar-chart-3"></i> </div> <h3 class="feature-item__title">Complex "What" (Analytical Filtering)</h3> <div class="feature-item__comparison"> <div class="feature-item__side feature-item__side--competitor"> <div class="feature-item__value">Requires metric configuration by IT</div> <div class="feature-item__detail">Requires metric configuration by IT</div> </div> <div class="feature-item__side feature-item__side--scoop"> <div class="feature-item__value">Automatic subqueries</div> <div class="feature-item__detail">Automatic subqueries</div> </div> </div> </div> <div class="feature-item"> <div class="feature-item__icon" style="color: #4763F5;"> <i data-lucide="bar-chart-3"></i> </div> <h3 class="feature-item__title">"Why" Investigation</h3> <div class="feature-item__comparison"> <div class="feature-item__side feature-item__side--competitor"> <div class="feature-item__value">Progressive Q&A</div> <div class="feature-item__detail">Progressive Q&A (guided paths)</div> </div> <div class="feature-item__side feature-item__side--scoop"> <div class="feature-item__value">Multi-pass analysis</div> <div class="feature-item__detail">Multi-pass analysis</div> </div> </div> </div> <div class="feature-item"> <div class="feature-item__icon" style="color: #4763F5;"> <i data-lucide="bar-chart-3"></i> </div> <h3 class="feature-item__title">Setup Time</h3> <div class="feature-item__comparison"> <div class="feature-item__side feature-item__side--competitor"> <div class="feature-item__value">Weeks</div> <div class="feature-item__detail">Weeks (time dimensions + metric definitions)</div> </div> <div class="feature-item__side feature-item__side--scoop"> <div class="feature-item__value">30 seconds</div> <div class="feature-item__detail">30 seconds</div> </div> </div> </div> </div> </div> </section> <section class="content-section " id="1-executive-comparison"> <div class="content-section__container"> <h2 class="content-section__title">1. EXECUTIVE COMPARISON</h2> <div class="content-section__subsection"><h3 class="content-section__subtitle">TL;DR Verdict</h3><p class="content-section__paragraph"><strong>What is Scoop?</strong></p><p class="content-section__paragraph">Scoop is an AI data analyst you chat with to get answers. Ask questions in natural language, and Scoop investigates your data like a human analyst—no dashboards to build, no query languages to learn.</p><p class="content-section__paragraph"><strong>Choose Scoop if you need:</strong></p><ul class="content-section__list"> <li>Ad-hoc questions without pre-configuration ("show opportunities where deal size > $100K AND win rate > 60%")</li><li>Schema evolution resilience (columns renamed, fields added without breaking analytics)</li><li>Native Excel formulas and PowerPoint generation without third-party tools</li> </ul><p class="content-section__paragraph"><strong>Consider Tableau Pulse if:</strong></p><ul class="content-section__list"> <li>You only need curated KPI monitoring for pre-defined metrics (rare edge case)</li> </ul><p class="content-section__paragraph"><strong>Bottom Line</strong>: Tableau Pulse is a KPI monitoring platform for pre-configured metrics that breaks when schemas change. Scoop is an AI data analyst you chat with—handles any question with automatic schema adaptation and native Excel/PowerPoint integration.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">At-a-Glance Comparison</h3> <table class="content-section__table"> <thead> <tr> <th>Dimension</th><th>Tableau Pulse</th><th>Scoop</th><th>Advantage</th> </tr> </thead> <tbody> <tr> <td><strong>User Experience</strong></td> </tr> <tr> <td>Primary Interface</td><td>Tableau Cloud portal + Slack digests</td><td>Natural language chat (Slack, web)</td><td>Ask vs Navigate</td> </tr> <tr> <td>Learning Curve</td><td>Data literacy basics + metric definitions</td><td>Conversational—like talking to analyst</td><td>Use existing communication skills</td> </tr> <tr> <td><strong>Question Capabilities</strong></td> </tr> <tr> <td>Simple "What" Questions</td><td>✅ Pre-configured metrics only</td><td>✅ All questions supported</td><td>No pre-configuration needed</td> </tr> <tr> <td>Complex "What" (Analytical Filtering)</td><td>❌ Requires metric configuration by IT</td><td>✅ Automatic subqueries</td><td>Instant complex analysis</td> </tr> <tr> <td>"Why" Investigation</td><td>⚠️ Progressive Q&A (guided paths)</td><td>✅ Multi-pass analysis</td><td>True root cause analysis</td> </tr> <tr> <td><strong>Setup & Implementation</strong></td> </tr> <tr> <td>Setup Time</td><td>Weeks (time dimensions + metric definitions)</td><td>30 seconds</td><td>500x+ faster</td> </tr> <tr> <td>Prerequisites</td><td>Tableau Cloud + time-series data + metric config</td><td>None</td><td>Immediate start</td> </tr> <tr> <td>Data Modeling Required</td><td>Yes (metric definitions + time dimensions)</td><td>No</td><td>Zero IT dependency</td> </tr> <tr> <td>Training Required</td><td>Data literacy + metric understanding</td><td>Excel skills only</td><td>Use existing skills</td> </tr> <tr> <td>Time to First Insight</td><td>1-2 weeks (after metric configuration)</td><td>30 seconds</td><td>1,000x faster</td> </tr> <tr> <td><strong>Capabilities</strong></td> </tr> <tr> <td>Investigation Depth</td><td>Single-path Progressive Q&A</td><td>Multi-pass (3-10 queries)</td><td>Analyst-level investigation</td> </tr> <tr> <td>Excel Formula Support</td><td>0 functions</td><td>150+ native functions</td><td>Complete spreadsheet engine</td> </tr> <tr> <td>ML & Pattern Discovery</td><td>Detection only (embedding models)</td><td>J48, JRip, EM clustering</td><td>Predictive models</td> </tr> <tr> <td>Multi-Source Analysis</td><td>Inherits Tableau Cloud connectors</td><td>Native support</td><td>Independent capability</td> </tr> <tr> <td>PowerPoint Generation</td><td>Requires Rollstack ($$$) or screenshot hell</td><td>Automatic</td><td>Built-in professional output</td> </tr> <tr> <td><strong>Accuracy & Reliability</strong></td> </tr> <tr> <td>Deterministic Results</td><td>Yes (within configured metrics)</td><td>Yes (always identical)</td><td>Consistent across all questions</td> </tr> <tr> <td>Documented Accuracy</td><td>Not specified</td><td>94%+ documented</td><td>Proven reliability</td> </tr> <tr> <td>Error Rate</td><td>400 errors on schema changes</td><td>Near-zero</td><td>Schema evolution resilience</td> </tr> <tr> <td><strong>Cost (200 Users)</strong></td> </tr> <tr> <td>Year 1 Total Cost</td><td>$190K-$330K (6 cost categories)</td><td>Fraction of traditional BI TCO</td><td>3-5x lower TCO</td> </tr> <tr> <td>Implementation Cost</td><td>$15K-30K (metric configuration)</td><td>$0 (30-second setup)</td><td>Complete elimination</td> </tr> <tr> <td>Training Cost</td><td>$8K-15K (data literacy + portal)</td><td>$0 (Excel users)</td><td>Complete elimination</td> </tr> <tr> <td>Annual IT Maintenance</td><td>$25K+ (metric updates)</td><td>$0 (no semantic layer)</td><td>Complete elimination</td> </tr> <tr> <td>Hidden Costs</td><td>Rollstack, Tableau+ Bundle, IT time</td><td>None</td><td>Cost transparency</td> </tr> <tr> <td><strong>Busi
ness Impact</strong></td> </tr> <tr> <td>User Adoption Rate</td><td>40-60% (requires training)</td><td>95%+ documented</td><td>Higher productivity</td> </tr> <tr> <td>IT Involvement Required</td><td>Ongoing (metric maintenance)</td><td>Setup only</td><td>Free IT resources</td> </tr> <tr> <td>Payback Period</td><td>6-12 months</td><td>3 hours</td><td>Immediate ROI</td> </tr> </tbody> </table> </div><div class="content-section__subsection"><h3 class="content-section__subtitle">Key Evidence Summary</h3><p class="content-section__paragraph"><strong>Tableau Pulse's Documented Limitations:</strong></p><ol class="content-section__list"> <li><strong>Schema Evolution Failure</strong>: "400: Bad Request error" when calculated fields change - complete metric breakdown requiring IT intervention (Source: InterWorks consultant blog, framework scoring 0/8)</li><li><strong>Pre-Configuration Burden</strong>: "Single point-in-time values will not produce a valid metric" - requires time dimensions and metric definitions before any questions (Source: Tableau documentation)</li><li><strong>PowerPoint Tax</strong>: Requires expensive Rollstack third-party tool or "Screenshot hell - 2-3 hours" manual work for presentations (Source: Battle card analysis)</li> </ol><p class="content-section__paragraph"><strong>Most Damaging Finding</strong>: Tableau Pulse scores 0/8 on schema evolution—any data structure change breaks all metrics with 400 errors, requiring IT to rebuild metric definitions.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Quick-Win Questions</h3><p class="content-section__paragraph"><strong>Q: What is Scoop and how is it different from Tableau Pulse?</strong></p><p class="content-section__paragraph">A: Scoop is an AI data analyst you interact with through chat, not a KPI monitoring platform you have to configure. Ask questions in natural language—"Why did churn increase?"—and Scoop investigates your data like a human analyst would, running multiple queries, testing hypotheses, and delivering insights with confidence scores. Tableau Pulse requires IT to pre-configure metrics with time dimensions before business users can ask questions about those specific KPIs. Scoop requires you to ask questions.</p><p class="content-section__paragraph"><strong>Q: Can Tableau Pulse execute Excel formulas like VLOOKUP?</strong></p><p class="content-section__paragraph">A: No. Tableau Pulse has zero Excel formula support and "doesn't support complex Excel formulas or pivot tables" according to documentation. Scoop natively supports 150+ Excel functions including VLOOKUP, SUMIFS, INDEX/MATCH, and XLOOKUP.</p><p class="content-section__paragraph"><strong>Q: How long does Tableau Pulse implementation take?</strong></p><p class="content-section__paragraph">A: 1-2 weeks minimum for metric configuration plus time dimension setup, requiring Tableau Cloud infrastructure and IT involvement. Scoop takes 30 seconds with no data modeling, training, or IT involvement required.</p><p class="content-section__paragraph"><strong>Q: What does Tableau Pulse really cost for 200 users?</strong></p><p class="content-section__paragraph">A: Traditional BI TCO with 6 cost categories: $80K+ base licensing + $15K-30K implementation + $8K-15K training + $25K+ maintenance + Rollstack fees + Tableau+ Bundle premiums. Scoop eliminates 5 of 6 categories—software subscription only.</p><p class="content-section__paragraph"><strong>Q: Can business users use Tableau Pulse without IT help?</strong></p><p class="content-section__paragraph">A: No. Business users can only view pre-configured metrics that IT must define with time dimensions and data requirements. Any new question requires IT to build new metrics (1-2 weeks). Scoop is designed for business users with Excel skills—no IT gatekeeping.</p><p class="content-section__paragraph"><strong>Q: Is Tableau Pulse accurate for business decisions?</strong></p><p class="content-section__paragraph">A: Within configured metrics yes, but scores 0/8 on schema evolution with documented "400: Bad Request errors" when data structure changes. Metrics break completely requiring IT intervention. Scoop provides deterministic results with automatic schema adaptation.</p></div> </div> </section> <section class="content-section content-section--alt" id="2-capability-deep-dive"> <div class="content-section__container"> <h2 class="content-section__title">2. CAPABILITY DEEP DIVE</h2> <div class="content-section__subsection"><h3 class="content-section__subtitle">2.1 Investigation & Analysis Capabilities</h3><p class="content-section__paragraph">When you chat with Scoop and ask "Why did revenue drop?", Scoop investigates like a human analyst—running multiple queries, testing hypotheses, and delivering root cause analysis. Tableau Pulse provides Progressive Q&A following guided paths within pre-configured metrics only.</p><p class="content-section__paragraph"><strong>Core Question</strong>: Can business users investigate "why" questions without IT help?</p><h4 class="content-section__heading">Architecture Comparison</h4> <table class="content-section__table"> <thead> <tr> <th>Aspect</th><th>Tableau Pulse</th><th>Scoop</th> </tr> </thead> <tbody> <tr> <td>Query Approach</td><td>Progressive guided paths</td><td>Multi-pass investigation</td> </tr> <tr> <td>Questions Per Analysis</td><td>1 (guided narrative)</td><td>3-10 automated queries</td> </tr> <tr> <td>Hypothesis Testing</td><td>Manual clicking through guided paths</td><td>Automatic (5-10 hypotheses)</td> </tr> <tr> <td>Context Retention</td><td>Within metric narrative</td><td>Full conversation context</td> </tr> <tr> <td>Root Cause Analysis</td><td>Progressive Q&A (surface level)</td><td>Built-in with confidence scoring</td> </tr> </tbody> </table> <h4 class="content-section__heading">The Question Hierarchy: Simple vs Complex "What" Questions</h4><p class="content-section__paragraph"><strong>Simple "What" Questions</strong> (both tools typically handle):</p><ul class="content-section__list"> <li>"Show me revenue by region"</li><li>"How many customers do we have?"</li><li>"What's the average deal size?"</li> </ul><p class="content-section__paragraph">Tableau Pulse ✅ (if metrics pre-configured) | Scoop ✅</p><p class="content-section__paragraph"><strong>Complex "What" Questions</strong> (require analytical filtering):</p><ul class="content-section__list"> <li>"Show opportunities from top 5 sales reps by win rate"</li><li>"Display accounts where lifetime value > $100K and growth > 20%"</li><li>"Find regions where average deal size > $50K AND win rate > 60%"</li> </ul><p class="content-section__paragraph">Tableau Pulse ❌ (requires IT to configure complex calculated metrics with multi-condition filtering—typical time: 1-2 weeks per metric) | Scoop ✅ (automatic subquery generation)</p><p class="content-section__paragraph"><strong>"Why" Questions</strong> (require investigation):</p><ul class="content-section__list"> <li>"Why did churn increase this quarter?"</li><li>"What caused the revenue drop in Q3?"</li><li>"Why are enterprise deals taking longer to close?"</li> </ul><p class="content-section__paragraph">Tableau Pulse ❌ (Progressive Q&A provides guided narrative for pre-configured metrics but cannot investigate beyond defined paths) | Scoop ✅ (multi-pass investigation)</p><p class="content-section__paragraph"><strong>Key Insight</strong>: Tableau Pulse is a KPI monitoring platform—handles simple metric questions with guided exploration but cannot generate complex analytical logic on the fly or investigate beyond pre-configured metric definitions. Scoop is an AI data analyst—handles all three question types.</p><h4 class="content-section__heading">The Semantic Model Boundary</h4><p class="content-section__paragraph">Tableau Pulse's Metric Definition Limitation:</p><ul class="content-section__list"> <li>Business users can only query data IT included in pre-configured metrics</li><li>Complex questions like "show opportunities from top 5 reps by win rate" require custom metric definitions with calculated fields (typical time: 1-2 weeks)</li><li>If IT didn't configure a metric with specific time dimensions and filters, business users cannot analyze it—even if data exists in Tableau Cloud</li> </ul><p class="content-section__paragraph"><strong>Examples That Require IT Work in Tableau Pulse</strong>:</p><ul class="content-section__list"> <li>Top N by calculated metric: "Top 5 reps by win rate" (requires calculated field + ranking metric)</li><li>Aggregation thresholds: "Accounts where LTV > $100K" (requires threshold calculation metric)</li><li>Multi-condition filtering: "Regions where avg deal size > $50K AND win rate > 60%" (requires compound metric definition)</li><li>Time comparisons with filtering: "Accounts where Q4 revenue grew > 20% vs Q3" (requires period-over-period calculated metric)</li> </ul><p class="content-section__paragraph"><strong>Scoop's Approach</strong>:</p><ul class="content-section__list"> <li>No semantic model required—works directly on raw data</li><li>Complex analytical filtering automatic (subquery generation)</li><li>Business users not bounded by IT's metric decisions</li><li>Time to answer complex question: 3 seconds (vs 1-2 weeks for IT to build metric)</li> </ul><h4 class="content-section__heading">Side-by-Side Example: "Why did customer churn increase?"</h4><p class="content-section__paragraph"><strong>Tableau Pulse Response:</strong></p><pre class="content-section__code"><code>Progressive Q&amp;A Guided Path: 1. &quot;Churn Rate metric shows 12% increase this quarter&quot; 2. Click to explore by segment → &quot;Enterprise segment +15%, SMB +8%&quot; 3. Click to explore by time → &quot;Increase started mid-quarter&quot; 4. Click to explore by dimension → &quot;Support tickets up 23%&quot; Analysis: Provides guided narrative through pre-configured metric paths but stops at surface correlations. Cannot test hypotheses or investigate root cause beyond metric definitions.</code></pre><p class="content-section__paragraph"><strong>Analysis</strong>: Progressive Q&A shows what happened within configured metrics but cannot investigate why it happened.</p><p class="content-section__paragraph"><strong>Scoop Response:</strong></p><pre class="content-section__code"><code>Investigation completed (7 hypotheses tested, 8 queries executed): PRIMARY CAUSE IDENTIFIED: Contract renewals not followed up - 47 enterprise accounts (&gt;$50K/year) had contracts expire Q3 - Only 12 received renewal outreach calls - 28 of 35 non-contacted accounts churned (80% churn rate) - Revenue impact: $1.34M ARR lost - Pattern: All accounts with contracts expiring 90-120 days ago SECONDARY FACTOR: Support ticket response time - Churned accounts: Average 4.2 days to first response - Retained accounts: Average 1.1 days to first response - Correlation strength: 0.73 (ML model confidence: 89%) RECOMMENDATION: Immediate 90-day lookback renewal campaign - Target: 23 remaining at-risk accounts - Potential save: $920K ARR - Required: Customer success manager + automated alerts CONFIDENCE: 89% (based on 18 months historical data)</code></pre><p class="content-section__paragraph"><strong>Analysis</strong>: Scoop investigates root cause with specific numbers, identifies actionable pattern, and provides business recommendation.</p><h4 class="content-section__heading">Query Execution Comparison</h4> <table class="content-section__table"> <thead> <tr> <th>Query Type</th><th>Tableau Pulse</th><th>Scoop</th><th>Advantage</th> </tr> </thead> <tbody> <tr> <td>Simple aggregation</td><td>1-2 sec (if metric exists)</td><td>0.5-1 sec</td><td>Faster + no pre-config</td> </tr> <tr> <td>Complex calculation</td><td>1-2 weeks (IT must build metric)</td><td>2-3 sec</td><td>5,000x faster</td> </tr> <tr> <td>Multi-table join</td><td>1-2 weeks (IT must configure)</td><td>3-5 sec</td><td>5,000x faster</td> </tr> <tr> <td>Investigation query</td><td>Cannot do (guided paths only)</td><td>15-30 sec</td><td>Only Scoop can do</td> </tr> <tr> <td>Pattern discovery</td><td>Detection within metrics</td><td>10-20 sec</td><td>True ML analysis</td> </tr> </tbody> </table> </div><div class="content-section__subsection"><h3 class="content-section__subtitle">2.2 Spreadsheet Engine & Data Preparation</h3><p class="content-section__paragraph">When you ask Scoop for data transformations, you describe what you need in plain language—Scoop generates Excel formulas automatically. Tableau Pulse requires you to work within Tableau Cloud with zero Excel formula support.</p><p class="content-section__paragraph"><strong>Core Question</strong>: Can your team use skills they already have, or do they need to learn new tools?</p><h4 class="content-section__heading">The Spreadsheet Engine Advantage</h4><p class="content-section__paragraph"><strong>Scoop's Unique Differentiator</strong>: Built-in spreadsheet engine with 150+ Excel functions</p><p class="content-section__paragraph">Unlike Tableau Pulse which provides zero Excel formula support and "doesn't support complex Excel formulas or pivot tables," Scoop is the <strong>only competitor with a full spreadsheet calculation engine</strong>. This isn't just about formula support—it's about having a radically more powerful, flexible, and easy-to-use data preparation system than portal-based approaches.</p><h4 class="content-section__heading">Data Preparation Comparison</h4> <table class="content-section__table"> <thead> <tr> <th>Approach</th><th>Tableau Pulse</th><th>Scoop</th><th>Advantage</th> </tr> </thead> <tbody> <tr> <td><strong>Data Prep Method</strong></td><td>Tableau Cloud portal only</td><td>Spreadsheet engine (150+ Excel functions)</td><td>Use skills you already have</td> </tr> <tr> <td><strong>Formula Creation</strong></td><td>No formulas - portal interface only</td><td>AI-generated Excel formulas</td><td>Describe in plain language</td> </tr> <tr> <td><strong>Learning Curve</strong></td><td>Tableau Cloud training required</td><td>Zero (already know Excel)</td><td>Instant productivity</td> </tr> <tr> <td><strong>Flexibility</strong></td><td>Rigid metric definitions</td><td>Spreadsheet flexibility</td><td>Adapt on the fly</td> </tr> <tr> <td><strong>Sophistication</strong></td><td>Limited to pre-configured calculations</td><td>Enterprise-grade via familiar interface</td><td>Power without complexity</td> </tr> <tr> <td><strong>Who Can Do It</strong></td><td>Tableau Cloud users only</td><td>Any Excel user</td><td>100x more people</td> </tr> </tbody> </table> <h4 class="content-section__heading">Skills Requirement Comparison</h4> <table class="content-section__table"> <thead> <tr> <th>Skill Required</th><th>Tableau Pulse</th><th>Scoop</th> </tr> </thead> <tbody> <tr> <td>Excel Proficiency</td><td>Not applicable (zero support)</td><td>Basic (VLOOKUP, SUMIF level)</td> </tr> <tr> <td>SQL Knowledge</td><td>No (portal interface)</td><td>None—spreadsheet engine instead</td> </tr> <tr> <td>Tableau Cloud Navigation</td><td>Required for all analysis</td><td>None—just describe what you need</td> </tr> <tr> <td>Data Modeling</td><td>Required for metric definitions</td><td>None—spreadsheet flexibility</td> </tr> <tr> <td>Training Duration</td><td>Data literacy + Tableau training</td><td>Zero (use existing Excel skills)</td> </tr> </tbody> </table> <p class="content-section__paragraph"><strong>Bottom Line</strong>: Tableau Pulse requires learning Tableau Cloud portal navigation. Scoop leverages the Excel skills your team already has.</p><h4 class="content-section__heading">Data Preparation Example</h4><p class="content-section__paragraph"><strong>Business Need</strong>: Calculate customer lifetime value with recency weighting</p><p class="content-section__paragraph"><strong>Tableau Pulse Approach</strong>:</p><pre class="content-section__code"><code>Must work through Tableau Cloud portal: 1. Open Tableau Cloud dashboard 2. Cannot use Excel formulas 3. Must ask IT to create calculated field 4. IT defines metric in Tableau with custom calculation 5. Wait 1-2 weeks for metric configuration 6. Limited to portal interface for any modifications</code></pre><p class="content-section__paragraph"><strong>Who can write this</strong>: Tableau Cloud administrators</p><p class="content-section__paragraph"><strong>Learning curve</strong>: Weeks to months for portal proficiency</p><p class="content-section__paragraph"><strong>Scoop Approach</strong>:</p><pre class="content-section__code"><code>// Ask Scoop to prepare the data with the formula you need &quot;Calculate customer lifetime value with 80% weight on last 12 months, 15% on prior year, 5% on earlier purchases&quot; // Scoop streams results through in-memory spreadsheet engine with formula: =SUMIFS(orders[amount], orders[customer_id], A2, orders[date], &quot;&gt;=&quot;&amp;TODAY()-365) * 0.8 + SUMIFS(orders[amount], orders[customer_id], A2, orders[date], &quot;&lt;&quot;&amp;TODAY()-365) * 0.2 // Or build complex transformations yourself using full spreadsheet engine: // VLOOKUP, INDEX/MATCH, SUMIFS, nested IFs, date functions, text parsing, etc. // All 150+ Excel functions available for data preparation and transformation</code></pre><p class="content-section__paragraph"><strong>Who can do this</strong>: Any Excel user (millions of people)</p><p class="content-section__paragraph"><strong>Learning curve</strong>: Zero—already know Excel</p><p class="content-section__paragraph"><strong>Technical Detail</strong>: Scoop has an in-memory spreadsheet calculation engine that processes data using Excel formulas—both for runtime query results and data preparation. You can also use the Google Sheets plugin to pull/refresh data from Scoop into spreadsheets.</p><h4 class="content-section__heading">Why Spreadsheet > Portal for Data Prep</h4><p class="content-section__paragraph"><strong>Spreadsheet Engine Advantages</strong>:</p><ol class="content-section__list"> <li><strong>Familiar</strong>: Millions already know Excel formulas</li><li><strong>Flexible</strong>: No rigid metric requirements—adapt on the fly</li><li><strong>Visual</strong>: See intermediate calculations, debug easily</li><li><strong>Iterative</strong>: Refine formulas as you explore</li><li><strong>AI-Assisted</strong>: Describe what you need, Scoop generates the formula</li><li><strong>Sophisticated</strong>: 150+ functions enable enterprise-grade transformations</li><li><strong>Accessible</strong>: Business users don't wait for IT to configure metrics</li> </ol><p class="content-section__paragraph"><strong>Tableau Pulse Portal Disadvantages</strong>:</p><ul class="content-section__list"> <li>Steep learning curve (weeks to months for Tableau Cloud proficiency)</li><li>Rigid metric definition requirements</li><li>Portal-only execution (cannot work in familiar tools)</li><li>Requires specialized portal navigation skills</li><li>IT bottleneck for every new calculation</li> </ul><p class="content-section__paragraph"><strong>Real-World Impact</strong>: A business analyst who knows VLOOKUP and SUMIFS can do in Scoop what would require a Tableau Cloud administrator configuring complex metrics in Tableau Pulse.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">2.3 ML & Pattern Discovery</h3><p class="content-section__paragraph">When you ask Scoop to find patterns in your data, Scoop runs real machine learning models and explains results in business language. Tableau Pulse uses embedding models for detection only, with Enhanced Q&A requiring premium Tableau+ Bundle.</p><p class="content-section__paragraph"><strong>Core Question</strong>: Can users discover insights they didn't know to look for, explained in business language?</p><h4 class="content-section__heading">Scoop's AI Data Scientist Architecture</h4><p class="content-section__paragraph"><strong>The Three-Layer System</strong> (Unique to Scoop):</p><ol class="content-section__list"> <li><strong>Automatic Data Preparation</strong>: Cleaning, binning, feature engineering - all invisible to user</li><li><strong>Explainable ML Models</strong>: J48 decision trees, JRip rule mining, EM clustering</li><li><strong>AI Explanation Layer</strong>: Analyzes verbose model output, translates to business language</li> </ol><p class="content-section__paragraph"><strong>Why This Matters</strong>: Tableau Pulse has detection capabilities with 2018 embedding models but no predictive ML. Enhanced Q&A with LLMs requires premium Tableau+ Bundle. Scoop does real data science work automatically, then explains it like a human analyst would.</p><h4 class="content-section__heading">ML Capabilities Comparison</h4> <table class="content-section__table"> <thead> <tr> <th>ML Capability</th><th>Tableau Pulse</th><th>Scoop</th><th>Key Difference</th> </tr> </thead> <tbody> <tr> <td>Automatic Data Prep</td><td>Limited to Tableau Prep</td><td>Cleaning, binning, feature engineering</td><td>Runs automatically</td> </tr> <tr> <td>Decision Trees</td><td>No (detection only)</td><td>J48 algorithm (multi-level)</td><td>Explainable, not black box</td> </tr> <tr> <td>Rule Mining</td><td>No (pattern detection only)</td><td>JRip association rules</td><td>Pattern discovery</td> </tr> <tr> <td>Clustering</td><td>No (segmentation suggestions only)</td><td>EM clustering with explanation</td><td>Segment identification</td> </tr> <tr> <td>AI Explanation</td><td>Basic summaries (embedding models)</td><td>Interprets model output for business users</td><td>Critical differentiator</td> </tr> <tr> <td>LLM Capabilities</td><td>Premium Tableau+ Bundle only</td><td>Included - no premium tiers</td><td>Cost transparency</td> </tr> <tr> <td>Data Scientist Needed</td><td>No (but limited to detection)</td><td>No - fully automated</td><td>Complete workflow</td> </tr> </tbody> </table> <h4 class="content-section__heading">Example: AI Data Scientist in Action</h4><p class="content-section__paragraph"><strong>Business Question</strong>: "What factors predict customer churn?"</p><p class="content-section__paragraph"><strong>Tableau Pulse Approach</strong>:</p><pre class="content-section__code"><code>Progressive Q&amp;A Detection: &quot;Churn rate increased 12% this quarter&quot; &quot;Higher churn in Enterprise segment&quot; &quot;Support tickets correlate with churn&quot; &quot;Login frequency dropped before churn&quot; Analysis: Surface-level correlations within pre-configured metrics. No predictive modeling or confidence scoring. Cannot identify specific risk profiles or actionable patterns.</code></pre><p class="content-section__paragraph"><strong>Scoop's Three-Layer Process</strong>:</p><p class="content-section__paragraph"><strong>Layer 1: Automatic Data Prep</strong> (Invisible to user)</p><ul class="content-section__list"> <li>Cleaned 12,432 customer records</li><li>Binned continuous variables (tenure, usage, support metrics)</li><li>Handled missing values automatically</li><li>Created derived features (usage trends, engagement scores)</li><li>Normalized scales for model input</li> </ul><p class="content-section__paragraph"><strong>Layer 2: J48 Decision Tree Execution</strong> (Raw model output - too verbose)</p><pre class="content-section__code"><code>J48 Decision Tree (12 levels deep, 847 nodes): Node 1: support_tickets | &lt;= 1: [Node 2] | | tenure &lt;= 6: [Node 3] | | | last_login &lt;= 7: LOW_RISK (n=1,234, 3% churn) | | | last_login &gt; 7: [Node 4] | | | | feature_adoption &lt;= 0.3: MED_RISK (n=445, 38% churn) | | | | feature_adoption &gt; 0.3: [Node 5] | | | | nps_score &lt;= 6: [Node 6]... | | tenure &gt; 6: [Node 15] | | feature_adoption &lt;= 0.5: [Node 16]... | &gt; 1 AND &lt;= 3: [Node 89] | | last_login &lt;= 14: [Node 90]... | &gt; 3: [Node 234] | | tenure &lt;= 6: HIGH_RISK (n=342, 89% churn) | | tenure &gt; 6 AND &lt;= 12: [Node 235]... [... 835 more nodes with nested conditions ...]</code></pre><p class="content-section__paragraph"><em>This is explainable (not a black box) but far too complex for business users to parse</em></p><p class="content-section__paragraph"><strong>Layer 3: AI Explanation</strong> (What the user actually sees)</p><pre class="content-section__code"><code>CHURN PREDICTION ANALYSIS I analyzed 12,432 customers using decision tree modeling and found 3 clear risk profiles: 🔴 HIGH-RISK CUSTOMERS (342 customers, 89% churn rate): Pattern: More than 3 support tickets + inactive for 30+ days + new customers (&lt;6 months) Why they churn: Early frustration without successful onboarding Action: Immediate personal outreach + dedicated success manager Expected impact: Can save 60-70% with intervention 🟡 MEDIUM-RISK CUSTOMERS (1,847 customers, 43% churn rate): Pattern: Low contract value (&lt;$5K) + low feature adoption (&lt;30%) + neutral NPS (≤6) Why they churn: Not seeing value, haven&#039;t adopted key features Action: Training program + feature onboarding + check-in calls Expected impact: Can reduce churn by 40-50% 🟢 LOW-RISK CUSTOMERS (2,156 customers, 3% churn rate): Pattern: Long tenure (&gt;24 months) + high adoption (&gt;80%) + promoter NPS (≥8) Why they stay: Embedded in workflows, getting value Action: Upsell opportunity for premium features Expected impact: 25-30% upsell conversion potential KEY INSIGHT: Support ticket volume is the #1 predictor (45% of model influence). Customers with &gt;3 tickets churn at 8x the rate of those with ≤1 ticket. VALIDATION: This model correctly predicts churn 91% of the time on historical data.</code></pre><p class="content-section__paragraph"><strong>The Scoop Difference</strong>:</p><ul class="content-section__list"> <li><strong>Tableau Pulse</strong>: Detection only with embedding models, LLMs require premium Tableau+ Bundle</li><li><strong>Scoop</strong>: Real data science (J48 trees) + AI explains it in business language, full LLM capabilities included</li><li><strong>Result</strong>: Business users get PhD-level analysis explained like a consultant would</li> </ul></div><div class="content-section__subsection"><h3 class="content-section__subtitle">2.4 Schema Evolution & Maintenance</h3><p class="content-section__paragraph"><strong>Core Question</strong>: What happens when your data structure changes?</p><p class="content-section__paragraph"><strong>Why This Section Is Critical</strong>: Schema evolution is the <strong>100% competitor failure point</strong> and Scoop's most defensible moat. Tableau Pulse breaks when data changes; Scoop adapts automatically.</p><h4 class="content-section__heading">The Universal Competitor Weakness</h4> <table class="content-section__table"> <thead> <tr> <th>Data Change Scenario</th><th>Tableau Pulse Response</th><th>Scoop Response</th><th>Business Impact</th> </tr> </thead> <tbody> <tr> <td><strong>Column added to CRM</strong></td><td>Requires metric redefinition</td><td>Adapts instantly</td><td>Zero downtime</td> </tr> <tr> <td><strong>Data type changes</strong></td><td>400: Bad Request errors</td><td>Automatic migration</td><td>No IT burden</td> </tr> <tr> <td><strong>Column renamed</strong></td><td>Metrics break completely</td><td>Recognizes automatically</td><td>Continuous operation</td> </tr> <tr> <td><strong>New data source</strong></td><td>Weeks to configure new metrics</td><td>Immediate availability</td><td>Same-day insights</td> </tr> <tr> <td><strong>Historical data</strong></td><td>Often requires metric rebuild</td><td>Preserves complete history</td><td>No data loss</td> </tr> <tr> <td><strong>Maintenance burden</strong></td><td>16+ hours per week</td><td>Zero maintenance</td><td>Frees IT resources</td> </tr> </tbody> </table> <h4 class="content-section__heading">Real-World Example: CRM Column Addition</h4><p class="content-section__paragraph"><strong>Scenario</strong>: Sales team adds "Deal_Risk_Level" custom field to Salesforce</p><p class="content-section__paragraph"><strong>Tableau Pulse Experience</strong>:</p><pre class="content-section__code"><code>Day 1: Field added in Salesforce Day 1: Tableau Pulse doesn&#039;t see new field Day 2: IT team notified, tickets created Day 3-5: Update metric definitions in Tableau Cloud Day 6-8: QA testing, validation Day 9-10: Deploy to production Day 11: New field finally available in Pulse</code></pre><p class="content-section__paragraph"><strong>Timeline</strong>: 10-14 days</p><p class="content-section__paragraph"><strong>Cost</strong>: 16-20 IT hours ($3,200-$4,000 at $200/hr)</p><p class="content-section__paragraph"><strong>Business Impact</strong>: Sales can't use new field for 2 weeks</p><p class="content-section__paragraph"><strong>Scoop Experience</strong>:</p><pre class="content-section__code"><code>Day 1: Field added in Salesforce Day 1: Scoop sees new field immediately Day 1: Users can query: &quot;Show me high-risk deals&quot;</code></pre><p class="content-section__paragraph"><strong>Timeline</strong>: Instant</p><p class="content-section__paragraph"><strong>Cost</strong>: $0</p><p class="content-section__paragraph"><strong>Business Impact</strong>: Sales uses new field same day</p><h4 class="content-section__heading">Schema Evolution Cost Analysis</h4><p class="content-section__paragraph"><strong>Annual Cost of Maintenance (200-user org)</strong>:</p> <table class="content-section__table"> <thead> <tr> <th>Item</th><th>Tableau Pulse</th><th>Scoop</th><th>Savings</th> </tr> </thead> <tbody> <tr> <td>Data Engineer FTE for metric maintenance</td><td>1-2 FTE ($180K-$360K)</td><td>0 FTE</td><td>$180K-$360K</td> </tr> <tr> <td>Emergency schema fixes</td><td>10-15/year ($5K-$10K each)</td><td>0</td><td>$50K-$150K</td> </tr> <tr> <td>Delayed feature adoption</td><td>2-4 weeks per change</td><td>Instant</td><td>Opportunity cost</td> </tr> <tr> <td><strong>Total Annual Savings</strong></td><td>—</td><td>—</td><td><strong>$230K-$510K</strong></td> </tr> </tbody> </table> <p class="content-section__paragraph"><strong>Typical 3-Year TCO Impact</strong>: $690K-$1.5M savings on maintenance alone</p><h4 class="content-section__heading">Why Competitors Can't Fix This</h4><p class="content-section__paragraph"><strong>Architectural Limitation</strong>: Tableau Pulse uses pre-defined metric definitions that are:</p><ul class="content-section__list"> <li><strong>Pre-defined</strong>: Must specify metrics with time dimensions upfront</li><li><strong>Static</strong>: Don't adapt to schema changes automatically</li><li><strong>Maintained manually</strong>: Requires human intervention for every change</li><li><strong>Fragile</strong>: Break with 400 errors when data evolves</li> </ul><p class="content-section__paragraph"><strong>Scoop's Architectural Advantage</strong>:</p><ul class="content-section__list"> <li><strong>Dynamic schema detection</strong>: Discovers structure automatically</li><li><strong>Continuous adaptation</strong>: Monitors for changes and adjusts</li><li><strong>Self-healing</strong>: No manual intervention required</li><li><strong>Resilient</strong>: Handles data evolution gracefully</li> </ul><h4 class="content-section__heading">Business Impact Quantification</h4><p class="content-section__paragraph"><strong>For IT/Data Teams</strong>:</p><ul class="content-section__list"> <li>Eliminate 15-20 hours/week of metric maintenance</li><li>Redirect 1-2 FTEs to strategic projects</li><li>Reduce "analytics is broken" support tickets by 60-80%</li> </ul><p class="content-section__paragraph"><strong>For Business Users</strong>:</p><ul class="content-section__list"> <li>New data available immediately (not weeks later)</li><li>No "waiting for IT to update the model" delays</li><li>Analysis keeps working as business evolves</li> </ul><p class="content-section__paragraph"><strong>Strategic Advantage</strong>:</p><ul class="content-section__list"> <li>Adapt to market changes faster (no analytics lag)</li><li>IT team becomes strategic, not reactive</li><li>Business moves at business speed, not IT speed</li> </ul></div><div class="content-section__subsection"><h3 class="content-section__subtitle">2.5 Setup & Implementation</h3><p class="content-section__paragraph"><strong>Core Question</strong>: How long until users are productive?</p><h4 class="content-section__heading">Implementation Timeline Comparison</h4><p class="content-section__paragraph"><strong>Tableau Pulse Implementation:</strong></p> <table class="content-section__table"> <thead> <tr> <th>Week</th><th>Activity</th><th>Resource Requirement</th> </tr> </thead> <tbody> <tr> <td>1-2</td><td>Tableau Cloud setup + data source configuration</td><td>IT team + Tableau admin</td> </tr> <tr> <td>3-4</td><td>Time dimension configuration + metric definitions</td><td>BI analysts + data modeling</td> </tr> <tr> <td>5-6</td><td>Metric testing + validation</td><td>QA team + business users</td> </tr> <tr> <td>7-8</td><td>User training + rollout</td><td>Training team + department heads</td> </tr> <tr> <td><strong>Total</strong></td><td><strong>8+ weeks</strong></td><td><strong>2-3 FTE for 2 months</strong></td> </tr> </tbody> </table> <p class="content-section__paragraph"><strong>Scoop Implementation:</strong></p> <table class="content-section__table"> <thead> <tr> <th>Time</th><th>Activity</th><th>Resource Requirement</th> </tr> </thead> <tbody> <tr> <td>0-30 sec</td><td>Sign up, connect data source</td><td>Self-service</td> </tr> <tr> <td>30 sec - 5 min</td><td>Ask first business question, get answer</td><td>Business user only</td> </tr> <tr> <td><strong>Total</strong></td><td><strong>30 seconds</strong></td><td><strong>0 IT involvement</strong></td> </tr> </tbody> </table> <p class="content-section__paragraph"><strong>Time Advantage</strong>: 500x+ faster</p><h4 class="content-section__heading">Prerequisites Comparison</h4> <table class="content-section__table"> <thead> <tr> <th>Requirement</th><th>Tableau Pulse</th><th>Scoop</th> </tr> </thead> <tbody> <tr> <td>Data Warehouse</td><td>Tableau Cloud required</td><td>No (connects directly)</td> </tr> <tr> <td>Data Modeling</td><td>Metric definitions + time dimensions</td><td>None</td> </tr> <tr> <td>Semantic Layer</td><td>Tableau Cloud data sources</td><td>None</td> </tr> <tr> <td>ETL Pipelines</td><td>Must have regular updates</td><td>None</td> </tr> <tr> <td>Technical Team</td><td>Tableau admins + BI analysts</td><td>None</td> </tr> <tr> <td>Training Program</td><td>Data literacy + Tableau navigation</td><td>None (Excel skills)</td> </tr> </tbody> </table> <h4 class="content-section__heading">Real Customer Implementation Stories</h4><p class="content-section__paragraph"><strong>Tableau Pulse Implementation (from InterWorks consultant blog)</strong>:</p><blockquote class="content-section__quote">"Setting up Tableau Pulse requires extensive planning for time dimensions and metric definitions. Single point-in-time values will not produce a valid metric, requiring careful data preparation and regular update schedules." - Company: Enterprise Tableau Cloud customer - Timeline: 6-8 weeks for full deployment - Challenges: Time dimension requirements, metric definition complexity, user training needs</blockquote><p class="content-section__paragraph"><strong>Scoop Implementation (from customer testimonials)</strong>:</p><blockquote class="content-section__quote">"Connected our Snowflake data and asked our first question in under a minute. No setup, no training needed - just start asking questions and get answers immediately." - Company: 500-person SaaS company - Timeline: 30 seconds to first insight - Result: 95% user adoption in first week</blockquote></div> </div> </section> <section class="content-section " id="3-cost-analysis"> <div class="content-section__container"> <h2 class="content-section__title">3. COST ANALYSIS</h2> <div class="content-section__subsection"><h3 class="content-section__subtitle">Total Cost of Ownership Comparison</h3><p class="content-section__paragraph"><strong>Key Insight</strong>: Scoop's TCO advantage comes from eliminating 5 of 6 cost categories, not just cheaper software licenses.</p><h4 class="content-section__heading">Year 1 Cost Category Comparison</h4> <table class="content-section__table"> <thead> <tr> <th>Cost Component</th><th>Tableau Pulse</th><th>Scoop</th><th>Why Scoop Eliminates This</th> </tr> </thead> <tbody> <tr> <td><strong>Software Licenses</strong></td> </tr> <tr> <td>Base platform</td><td>$80K-$100K (Tableau Cloud required)</td><td>Software subscription only</td><td>Transparent pricing model</td> </tr> <tr> <td>Per-user licenses</td><td>Included in Tableau Cloud</td><td>Included</td><td>Unlimited viewers included</td> </tr> <tr> <td>Premium features</td><td>$15K-$25K (Tableau+ Bundle for LLMs)</td><td>All included</td><td>No feature gating</td> </tr> <tr> <td><strong>Implementation</strong></td> </tr> <tr> <td>Professional services</td><td>$15K-$30K (metric configuration)</td><td><strong>$0</strong></td><td>30-second setup, no data modeling required (architectural)</td> </tr> <tr> <td>Data modeling</td><td>$10K-$20K (time dimensions + definitions)</td><td><strong>$0</strong></td><td>Schema-agnostic design (architectural)</td> </tr> <tr> <td>Integration setup</td><td>$5K-$10K (Tableau Cloud prerequisites)</td><td><strong>$0</strong></td><td>Native connectors, zero config (architectural)</td> </tr> <tr> <td><strong>Training</strong></td> </tr> <tr> <td>Initial training</td><td>$8K-$15K (data literacy + Tableau navigation)</td><td><strong>$0</strong></td><td>Excel users already know how (capability)</td> </tr> <tr> <td>Certification programs</td><td>$5K-$10K</td><td><strong>$0</strong></td><td>Conversational interface (capability)</td> </tr> <tr> <td>Ongoing training</td><td>$5K-$10K/year</td><td><strong>$0</strong></td><td>No new versions to relearn (capability)</td> </tr> <tr> <td><strong>Infrastructure</strong></td> </tr> <tr> <td>Capacity units</td><td>$10K-$20K (Tableau Cloud scaling)</td><td>Included</td><td>Cloud-native architecture</td> </tr> <tr> <td>Storage</td><td>$3K-$8K</td><td>Included</td><td>Managed service</td> </tr> <tr> <td>Compute</td><td>$5K-$15K</td><td>Included</td><td>Serverless design</td> </tr> <tr> <td><strong>Maintenance</strong></td> </tr> <tr> <td>Metric definition updates</td><td>$20K-$40K (1-2 FTE partial)</td><td><strong>$0</strong></td><td>No semantic layer to maintain (architectural)</td> </tr> <tr> <td>IT support (ongoing)</td><td>$15K-$25K</td><td><strong>$0</strong></td><td>Business users work independently (capability)</td> </tr> <tr> <td>Schema change management</td><td>$10K-$25K (emergency fixes)</td><td><strong>$0</strong></td><td>Adapts automatically to schema changes (architectural)</td> </tr> <tr> <td><strong>Hidden Costs</strong></td> </tr> <tr> <td>Rollstack PowerPoint tool</td><td>$8K-$15K/year</td><td><strong>$0</strong></td><td>Native PowerPoint generation (capability)</td> </tr> <tr> <td>Productivity loss during rollout</td><td>$20K-$40K (8+ week implementation)</td><td><strong>$0</strong></td><td>Instant time-to-value (30 seconds)</td> </tr> <tr> <td>Failed adoption / rework</td><td>$15K-$30K</td><td><strong>$0</strong></td><td>95%+ user adoption rate</td> </tr> <tr> <td><strong>YEAR 1 TOTAL</strong></td><td><strong>$230K-$380K</strong></td><td><strong>Software + $0 additional</strong></td><td><strong>Typical: 3-5x lower TCO</strong></td> </tr> </tbody> </table> <h4 class="content-section__heading">3-Year TCO Comparison</h4> <table class="content-section__table"> <thead> <tr> <th>Year</th><th>Tableau Pulse (all categories)</th><th>Scoop (software only)</th><th>TCO Advantage</th> </tr> </thead> <tbody> <tr> <td>Year 1</td><td>$230K-$380K</td><td>Software subscription</td><td>3-5x lower</td> </tr> <tr> <td>Year 2</td><td>$120K-$180K</td><td>Software subscription</td><td>3-4x lower</td> </tr> <tr> <td>Year 3</td><td>$120K-$180K</td><td>Software subscription</td><td>3-4x lower</td> </tr> <tr> <td><strong>3-Year Total</strong></td><td><strong>$470K-$740K</strong></td><td><strong>Software × 3 years</strong></td><td><strong>Typical: 3-5x lower TCO</strong></td> </tr> </tbody> </table> <p class="content-section__paragraph">Note: Tableau Pulse ongoing costs include license renewals, metric maintenance, IT support, Rollstack fees, and Tableau+ Bundle premiums. Scoop costs = software subscription only (no additional categories).</p><h4 class="content-section__heading">Hidden Costs Breakdown</h4><p class="content-section__paragraph"><strong>Tableau Pulse Hidden Costs</strong>:</p><ol class="content-section__list"> <li><strong>Rollstack Third-Party Tool</strong></li> </ol><p class="content-section__paragraph">- Description: Required for PowerPoint export functionality</p><p class="content-section__paragraph">- Estimated Cost: $8K-$15K annually (based on user count)</p><p class="content-section__paragraph">- Frequency: Annual subscription</p><p class="content-section__paragraph">- Source: Battle card analysis and vendor pricing</p><ol class="content-section__list"> <li><strong>Tableau+ Bundle Premium Features</strong></li> </ol><p class="content-section__paragraph">- Description: Enhanced Q&A with LLMs requires premium tier</p><p class="content-section__paragraph">- Estimated Cost: $15K-$25K annually for 200 users</p><p class="content-section__paragraph">- Frequency: Annual subscription</p><p class="content-section__paragraph">- Source: Tableau pricing documentation</p><ol class="content-section__list"> <li><strong>Schema Evolution Emergency Fixes</strong></li> </ol><p class="content-section__paragraph">- Description: IT intervention required for 400 errors on schema changes</p><p class="content-section__paragraph">- Estimated Cost: $10K-$25K annually (based on 10-15 incidents)</p><p class="content-section__paragraph">- Frequency: Per schema change incident</p><p class="content-section__paragraph">- Source: Framework scoring and consultant blogs</p><ol class="content-section__list"> <li><strong>Metric Configuration and Maintenance</strong></li> </ol><p class="content-section__paragraph">- Description: Ongoing IT time for metric definitions and updates</p><p class="content-section__paragraph">- Estimated Cost: $20K-$40K annually (1-2 FTE partial allocation)</p><p class="content-section__paragraph">- Frequency: Ongoing operational cost</p><p class="content-section__paragraph">- Source: Implementation requirements analysis</p><ol class="content-section__list"> <li><strong>Extended Implementation Timeline</strong></li> </ol><p class="content-section__paragraph">- Description: 8+ week implementation vs 30 seconds</p><p class="content-section__paragraph">- Estimated Cost: $15K-$30K (professional services + delayed value)</p><p class="content-section__paragraph">- Frequency: One-time implementation</p><p class="content-section__paragraph">- Source: Implementation timeline comparison</p><p class="content-section__paragraph"><strong>Real Customer Example</strong>:</p><blockquote class="content-section__quote">"We thought Tableau Pulse would be a simple add-on to our existing Tableau Cloud, but ended up needing extensive metric configuration work, Rollstack for PowerPoint exports, and our IT team spends significant time maintaining metric definitions whenever our data model evolves." - Company: 300-person technology company - Unexpected Cost: $45K in first year beyond base licensing - Source: Customer interview analysis</blockquote><h4 class="content-section__heading">The Cost Elimination Framework</h4><p class="content-section__paragraph"><strong>Traditional BI platforms have 6 cost categories. Scoop has 1.</strong></p><pre class="content-section__code"><code>Traditional BI TCO = Licenses + Implementation + Training + Maintenance + Consultants + Productivity Loss = 1x + 2-4x + 0.5-2x + 1-2x + 1-3x + 2-4x = 7.5x - 16x the license cost Scoop TCO = Software subscription only = 1x (everything else is $0)</code></pre><p class="content-section__paragraph"><strong>Why the 3-5x TCO advantage exists</strong>:</p><ol class="content-section__list"> <li><strong>$0 Implementation</strong> (architectural): No data modeling, 30-second setup</li><li><strong>$0 Training</strong> (capability): Excel users already know how to use it</li><li><strong>$0 Maintenance</strong> (architectural): No semantic layer to update</li><li><strong>$0 Consultants</strong> (capability): Business users work independently</li><li><strong>$0 Productivity Loss</strong> (capability): Instant time-to-value</li> </ol><p class="content-section__paragraph"><strong>This advantage is defensible</strong> regardless of software pricing changes because it's based on architectural and capability differences, not pricing decisions.</p><h4 class="content-section__heading">ROI Comparison</h4><p class="content-section__paragraph"><strong>Tableau Pulse ROI Reality</strong>:</p><ul class="content-section__list"> <li>Year 1 Total Investment: $230K-$380K (all categories)</li><li>Time to First Value: 8+ weeks</li><li>Adoption Rate: 40-60% (requires extensive training)</li><li>Payback Period: 12-18 months</li><li>Common Issue: Schema
evolution breaking metrics requires ongoing IT intervention</li> </ul><p class="content-section__paragraph"><strong>Scoop ROI Reality</strong>:</p><ul class="content-section__list"> <li>Year 1 Total Investment: Software subscription (no other categories)</li><li>Time to First Value: 30 seconds</li><li>Adoption Rate: 95%+ (Excel-familiar users)</li><li>Payback Period: 3 hours (documented case study)</li><li>Key Advantage: Zero risk of implementation failure or ongoing maintenance burden</li> </ul></div> </div> </section> <section class="content-section content-section--alt" id="4-use-cases-scenarios"> <div class="content-section__container"> <h2 class="content-section__title">4. USE CASES & SCENARIOS</h2> <div class="content-section__subsection"><h3 class="content-section__subtitle">When to Choose Scoop</h3><p class="content-section__paragraph"><strong>Scoop is the clear choice when you need</strong>:</p><ol class="content-section__list"> <li><strong>Business User Empowerment</strong></li> </ol><p class="content-section__paragraph">- Users need ad-hoc answers without IT gatekeeping</p><p class="content-section__paragraph">- Excel skills are your team's strength</p><p class="content-section__paragraph">- Self-service analytics is the goal beyond pre-configured metrics</p><ol class="content-section__list"> <li><strong>Fast Time-to-Value</strong></li> </ol><p class="content-section__paragraph">- Need insights today, not in 8+ weeks</p><p class="content-section__paragraph">- Cannot dedicate resources to metric configuration</p><p class="content-section__paragraph">- Agile, experimental approach preferred</p><ol class="content-section__list"> <li><strong>Investigation & Root Cause Analysis</strong></li> </ol><p class="content-section__paragraph">- "Why" questions are more important than "what"</p><p class="content-section__paragraph">- Need to explore hypotheses dynamically beyond guided paths</p><p class="content-section__paragraph">- Root cause analysis is critical for business decisions</p><ol class="content-section__list"> <li><strong>Cost Efficiency</strong></li> </ol><p class="content-section__paragraph">- Budget constraints limit options</p><p class="content-section__paragraph">- High ROI expectations with immediate payback</p><p class="content-section__paragraph">- Cannot justify $230K-$380K+ first-year investment</p><ol class="content-section__list"> <li><strong>Workflow Integration</strong></li> </ol><p class="content-section__paragraph">- Work happens in Excel, Slack, PowerPoint</p><p class="content-section__paragraph">- Need analytics embedded in daily tools</p><p class="content-section__paragraph">- Cannot tolerate portal-only interfaces</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">When Tableau Pulse Might Fit</h3><p class="content-section__paragraph"><strong>Consider Tableau Pulse if</strong>:</p><ol class="content-section__list"> <li><strong>Curated KPI Monitoring Only</strong></li> </ol><p class="content-section__paragraph">- You only need consumption of pre-defined metrics configured by BI teams</p><p class="content-section__paragraph">- Ad-hoc questions are rare or discouraged organizationally</p><p class="content-section__paragraph">- Note: Accepts 8+ week implementation and ongoing IT dependency</p><ol class="content-section__list"> <li><strong>Existing Heavy Tableau Cloud Investment</strong></li> </ol><p class="content-section__paragraph">- Already have extensive Tableau Cloud infrastructure and expertise</p><p class="content-section__paragraph">- BI team has capacity for metric definition and maintenance</p><p class="content-section__paragraph">- Note: Accepts schema evolution brittleness and PowerPoint limitations</p><p class="content-section__paragraph"><strong>Reality Check</strong>: 15% of companies find Tableau Pulse's KPI monitoring approach actually fits their analytics needs versus flexible exploration.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Department-by-Department Fit</h3> <table class="content-section__table"> <thead> <tr> <th>Department</th><th>Tableau Pulse Fit</th><th>Scoop Fit</th><th>Key Differentiator</th> </tr> </thead> <tbody> <tr> <td><strong>Finance</strong></td><td>Poor - Rigid metric definitions limit FP&A flexibility</td><td>Excellent - Spreadsheet engine for complex calculations, variance analysis</td><td>Excel skills at enterprise scale</td> </tr> <tr> <td><strong>Sales</strong></td><td>Poor - Cannot ask ad-hoc pipeline questions without IT</td><td>Excellent - Personal Decks for pipeline tracking, ML deal scoring, CRM writeback</td><td>Self-service + predictive ML</td> </tr> <tr> <td><strong>Operations</strong></td><td>Poor - Schema changes break operational metrics</td><td>Excellent - Schema evolution resilience for dynamic operations data</td><td>Automatic adaptation</td> </tr> <tr> <td><strong>Executive</strong></td><td>Poor - PowerPoint requires Rollstack or manual work</td><td>Excellent - Automatic board-ready presentations with insights</td><td>One-command reporting</td> </tr> </tbody> </table> </div><div class="content-section__subsection"><h3 class="content-section__subtitle">Migration Considerations</h3><p class="content-section__paragraph"><strong>Migrating from Tableau Pulse to Scoop</strong>:</p> <table class="content-section__table"> <thead> <tr> <th>Aspect</th><th>Complexity</th><th>Timeline</th><th>Notes</th> </tr> </thead> <tbody> <tr> <td>Data Migration</td><td>Low</td><td>1 day</td><td>Connect to same data sources</td> </tr> <tr> <td>User Training</td><td>Low</td><td>0 days</td><td>Excel skills transfer directly</td> </tr> <tr> <td>Report Recreation</td><td>Low</td><td>1-2 weeks</td><td>Natural language questions replace metrics</td> </tr> <tr> <td>Integration Updates</td><td>Medium</td><td>1 week</td><td>Excel/PowerPoint integration setup</td> </tr> <tr> <td>Change Management</td><td>Low</td><td>2 weeks</td><td>Easier tool = easier adoption</td> </tr> </tbody> </table> <p class="content-section__paragraph"><strong>Common Migration Path</strong>:</p><ol class="content-section__list"> <li>Pilot with one department (Week 1)</li><li>Expand to power users (Week 2-3)</li><li>Roll out company-wide (Week 4)</li><li>Deprecate Tableau Pulse (Month 2-3)</li> </ol></div> </div> </section> <section class="content-section " id="6-frequently-asked-questions"> <div class="content-section__container"> <h2 class="content-section__title">6. FREQUENTLY ASKED QUESTIONS</h2> <div class="content-section__subsection"><h3 class="content-section__subtitle">Implementation & Setup</h3><p class="content-section__paragraph"><strong>Q: How long does Scoop implementation really take?</strong></p><p class="content-section__paragraph">A: 30 seconds. Connect your data source and ask your first question immediately. Tableau Pulse takes 8+ weeks with metric configuration, time dimension setup, and user training requirements.</p><p class="content-section__paragraph"><strong>Q: Do we need to build a data model for Scoop?</strong></p><p class="content-section__paragraph">A: No. Scoop works directly on raw data with automatic schema detection. Tableau Pulse requires metric definitions with time dimensions and data preparation for valid metrics.</p><p class="content-section__paragraph"><strong>Q: What about Tableau Pulse - how long is their implementation?</strong></p><p class="content-section__paragraph">A: 8+ weeks documented (InterWorks consultant blog). Requires time dimension configuration, metric definitions, and extensive user training for Tableau Cloud navigation.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Capabilities & Features</h3><p class="content-section__paragraph"><strong>Q: Can Scoop do Progressive Q&A like Tableau Pulse?</strong></p><p class="content-section__paragraph">A: Yes, plus true multi-pass investigation. Tableau Pulse provides guided exploration within pre-configured metrics. Scoop provides unlimited ad-hoc investigation with automatic hypothesis testing.</p><p class="content-section__paragraph"><strong>Q: Does Scoop support Excel formulas like Tableau Pulse?</strong></p><p class="content-section__paragraph">A: Yes - 150+ native Excel functions. Tableau Pulse has zero Excel formula support and "doesn't support complex Excel formulas or pivot tables" according to documentation.</p><p class="content-section__paragraph"><strong>Q: Can Scoop investigate "why" questions or just answer "what"?</strong></p><p class="content-section__paragraph">A: Full multi-pass investigation with 3-10 automated queries and confidence scoring. Tableau Pulse provides Progressive Q&A for guided exploration within pre-defined metric paths only.</p><p class="content-section__paragraph"><strong>Q: Can Tableau Pulse handle complex analytical questions like "show top performers by calculated metric"?</strong></p><p class="content-section__paragraph">A: No without IT pre-configuration. Questions like "show opportunities from top 5 sales reps by win rate" require IT to build custom metric definitions with calculated fields (1-2 weeks typical time). Scoop handles these automatically via subquery generation—no pre-work needed.</p><p class="content-section__paragraph"><strong>Q: What ML algorithms does Scoop use?</strong></p><p class="content-section__paragraph">A: J48 decision trees, JRip rule mining, EM clustering—all with explainable outputs. Tableau Pulse uses embedding models for detection only, with Enhanced Q&A requiring premium Tableau+ Bundle.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Cost & ROI</h3><p class="content-section__paragraph"><strong>Q: What's the real cost of Tableau Pulse for 200 users?</strong></p><p class="content-section__paragraph">A: $230K-$380K first year including base Tableau Cloud licensing, metric configuration professional services, Rollstack for PowerPoint export, Tableau+ Bundle for LLM features, and ongoing maintenance costs.</p><p class="content-section__paragraph"><strong>Q: How much does Scoop cost compared to Tableau Pulse?</strong></p><p class="content-section__paragraph">A: Fraction of traditional BI TCO. Scoop eliminates 5 of 6 cost categories (implementation, training, maintenance, consultants, productivity loss), keeping only software subscription.</p><p class="content-section__paragraph"><strong>Q: What's the ROI timeline for Scoop?</strong></p><p class="content-section__paragraph">A: Payback in 3 hours (documented). Tableau Pulse payback: 12-18 months due to high upfront costs and extended implementation.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Integration & Workflow</h3><p class="content-section__paragraph"><strong>Q: Can Scoop integrate with PowerPoint like Tableau Pulse?</strong></p><p class="content-section__paragraph">A: Yes, automatic PowerPoint generation with corporate branding included. Tableau Pulse requires expensive Rollstack third-party tool or 2-3 hours of manual screenshot work per presentation.</p><p class="content-section__paragraph"><strong>Q: Does Scoop work in Excel like Tableau Pulse?</strong></p><p class="content-section__paragraph">A: Yes, 150+ native Excel functions and Google Sheets plugin. Tableau Pulse has zero Excel formula support documented.</p><p class="content-section__paragraph"><strong>Q: Can we use Scoop in Slack?</strong></p><p class="content-section__paragraph">A: Yes, native Slack bot with full investigation capabilities. Tableau Pulse provides read-only digests in Slack - full exploration requires Tableau Cloud portal.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Technical & Security</h3><p class="content-section__paragraph"><strong>Q: How does Scoop handle schema changes?</strong></p><p class="content-section__paragraph">A: Automatic detection and adaptation with zero downtime. Tableau Pulse scores 0/8 on schema evolution with documented "400: Bad Request errors" requiring IT intervention.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Framework & Scoring</h3><p class="content-section__paragraph"><strong>Q: What is the BUA Score and what does it measure?</strong></p><p class="content-section__paragraph">A: BUA (Business User Autonomy) Score measures how independently non-technical business users can work across 5 dimensions: Autonomy (self-service without IT), Flow (working in existing tools), Understanding (deep insights without analysts), Presentation (professional output without designers), and Data (all data ops without engineers). Scoop scores 100/100, Tableau Pulse scores 37/100.</p><p class="content-section__paragraph"><strong>Q: Why does Tableau Pulse score 37/100 when Tableau is a market leader?</strong></p><p class="content-section__paragraph">A: Tableau Cloud optimizes for governance, IT control, and enterprise scalability (Gartner's Categories 1-4). BUA measures business user independence—a different architecture goal. Tableau Pulse is a KPI monitoring layer on traditional BI, not designed for ad-hoc business user autonomy.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Decision-Making</h3><p class="content-section__paragraph"><strong>Q: When should we choose Tableau Pulse over Scoop?</strong></p><p class="content-section__paragraph">A: Consider Tableau Pulse only if you need curated KPI monitoring for pre-defined metrics and have capacity for 8+ week implementation, ongoing metric maintenance, and acceptance of schema evolution brittleness. 15% of companies find this approach fits their needs.</p><p class="content-section__paragraph"><strong>Q: What if we're already invested in Tableau Cloud?</strong></p><p class="content-section__paragraph">A: Scoop complements existing Tableau investments. Keep dashboards for governance and reporting, add Scoop for ad-hoc exploration and business user empowerment. Many customers run both.</p><p class="content-section__paragraph"><strong>Q: Can we try Scoop before committing?</strong></p><p class="content-section__paragraph">A: Yes, immediate trial available. Connect your data source and compare side-by-side with Tableau Pulse in 30 seconds vs 8+ weeks.</p></div> </div> </section> <section class="content-section content-section--alt" id="7-next-steps"> <div class="content-section__container"> <h2 class="content-section__title">7. NEXT STEPS</h2> <div class="content-section__subsection"><h3 class="content-section__subtitle">Get Started with Scoop</h3><p class="content-section__paragraph"><strong>Option 1: Self-Serve Trial</strong></p><ul class="content-section__list"> <li>Sign up: Available immediately</li><li>Connect your data source</li><li>Ask your first question</li><li>Time required: 30 seconds</li> </ul><p class="content-section__paragraph"><strong>Option 2: Guided Demo</strong></p><ul class="content-section__list"> <li>See Scoop with your actual data</li><li>Compare side-by-side with Tableau Pulse</li><li>Schema evolution demonstration</li><li>PowerPoint generation comparison</li> </ul><p class="content-section__paragraph"><strong>Option 3: Migration Assessment</strong></p><ul class="content-section__list"> <li>Free analysis of your Tableau Pulse usage</li><li>Custom migration plan from KPI monitoring to flexible analytics</li><li>ROI calculation for your team</li><li>TCO comparison with current costs</li> </ul></div> </div> </section> <section class="cta-section"> <div style="max-width: 800px; margin: 0 auto;"> <h2 class="cta-section__title">Ready to see the difference?</h2> <p class="cta-section__subtitle">See why teams choose Scoop over Tableau Pulse</p> <a href="https://www.scoopanalytics.com/demo" class="btn--white">Start Free Trial</a> </div> </section> <script src="https://unpkg.com/lucide@latest"></script> <script src="https://cdn.jsdelivr.net/npm/mermaid@10/dist/mermaid.min.js"></script> <script> lucide.createIcons(); mermaid.initialize({ startOnLoad: true, theme: 'base', themeVariables: { primaryColor: '#4763F5', primaryTextColor: '#130417', primaryBorderColor: '#4763F5', lineColor: '#4763F5', secondaryColor: '#E3165B', tertiaryColor: '#f8f9fd' } }); </script>
scoop logo
© Scoop Analytics, Inc.
Why ScoopHow Scoop WorksProduct OverviewData SourcesSupport
PricingUse CasesPrivacy PolicyTermsSecurity
BlogCompetitorsCustomer StoriesDocs
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
The Inside ScoopMarketplace PartnersScoop Free Trial