<!-- SEO-HIDDEN: This content is for search engines -->
<div style="position: absolute !important;
left: -99999px !important;
width: 1px !important;
height: 1px !important;
overflow: hidden !important;
opacity: 0 !important;
pointer-events: none !important;
user-select: none !important;">
<h1>Sisense vs Scoop Analytics - Complete Comparison Guide</h1>
<p><strong>Sisense scores 28/100 on the Business User Autonomy Framework, while Scoop Analytics scores 82/100.</strong> This comprehensive comparison reveals why teams choose Scoop over Sisense for business intelligence and analytics.</p>
<h2>Quick Comparison: Sisense vs Scoop Analytics</h2>
<ul>
<li><strong>Setup Time:</strong> Sisense requires 2-4 weeks with IT setup, Scoop takes 30 seconds</li>
<li><strong>User Access:</strong> Sisense requires portal login, Scoop works in Slack/Teams</li>
<li><strong>Query Capability:</strong> Sisense offers single-level queries, Scoop provides 3-10 levels deep</li>
<li><strong>Data Preparation:</strong> Sisense needs IT for modeling, Scoop is automatic</li>
<li><strong>Learning Curve:</strong> Sisense requires training, Scoop uses natural language</li>
<li><strong>Collaboration:</strong> Sisense limited to portal, Scoop native in collaboration tools</li>
<li><strong>Cost Model:</strong> Sisense has per-user licensing, Scoop offers flexible pricing</li>
</ul>
<h2>Business User Autonomy (BUA) Framework Analysis</h2>
<h3>Dimension 1: Discovery - How Users Find Insights</h3>
<p>Sisense scores low on discovery (8/32) because users must know what to look for in advance. They need to navigate through dashboards, understand data models, and know which reports contain the answers. Scoop scores 28/32 by allowing users to ask questions naturally and discover insights they didn't know existed.</p>
<h3>Dimension 2: Fluency - Natural Interaction with Data</h3>
<p>Sisense scores 10/35 on fluency due to its technical interface requiring SQL knowledge or dashboard navigation skills. Scoop scores 30/35 by accepting questions in plain English like "What caused our sales drop last quarter?" and providing instant answers.</p>
<h3>Dimension 3: Understanding - Deep Analysis Capability</h3>
<p>Sisense scores 7/33 on understanding because users can't easily dig deeper into results. They're limited to predefined drill-downs and can't ask follow-up questions. Scoop scores 24/33 by enabling iterative questioning, allowing users to explore data naturally with unlimited follow-ups.</p>
<h2>Why Organizations Choose Scoop Over Sisense</h2>
<h3>1. True Self-Service Analytics</h3>
<p>While Sisense claims self-service, users still depend on IT for new data sources, dashboard creation, and data model changes. Scoop delivers true self-service where business users can explore any connected data without technical assistance.</p>
<h3>2. No Portal Fatigue</h3>
<p>Sisense requires users to log into yet another portal, remember another password, and learn another interface. Scoop eliminates portal fatigue by working directly in Slack and Microsoft Teams where teams already collaborate.</p>
<h3>3. Faster Time to Insight</h3>
<p>With Sisense, getting an answer involves logging in, finding the right dashboard, applying filters, and interpreting visualizations. With Scoop, users simply ask a question and get an answer in seconds, reducing time to insight by 90%.</p>
<h3>4. Lower Total Cost of Ownership</h3>
<p>Sisense requires expensive per-user licenses, training costs, and ongoing IT support for dashboard maintenance. Scoop reduces TCO with flexible pricing, no training requirements, and zero maintenance overhead.</p>
<h3>5. Better Adoption Rates</h3>
<p>Typical Sisense deployments see 10-20% adoption rates because most users find it too complex. Scoop achieves 70-90% adoption because anyone who can type a question can use it effectively.</p>
<h2>Common Migration Scenarios from Sisense to Scoop</h2>
<h3>Scenario 1: Augmenting Existing BI</h3>
<p>Many organizations keep Sisense for complex reporting while adding Scoop for day-to-day business questions. This hybrid approach maximizes existing investments while improving accessibility.</p>
<h3>Scenario 2: Full Replacement</h3>
<p>Organizations frustrated with low adoption and high costs often fully replace Sisense with Scoop, especially when most users only need answers to questions rather than complex visualizations.</p>
<h3>Scenario 3: Departmental Deployment</h3>
<p>Sales, marketing, and customer success teams often adopt Scoop independently when Sisense doesn't meet their need for quick, iterative analysis.</p>
<h2>Technical Comparison</h2>
<h3>Data Connectivity</h3>
<p>Sisense connects to data sources but requires IT configuration and maintenance. Scoop offers one-click connections to 100+ data sources with automatic schema detection.</p>
<h3>Security and Compliance</h3>
<p>Both Sisense and Scoop offer enterprise security, but Scoop's approach is simpler with automatic PII detection and role-based access that mirrors existing organizational structures.</p>
<h3>Scalability</h3>
<p>Sisense can struggle with concurrent users and large datasets. Scoop's cloud-native architecture scales automatically to handle any workload without performance degradation.</p>
<h2>Customer Success Stories: Switching from Sisense to Scoop</h2>
<p>Companies report 3x faster decision-making after switching from Sisense to Scoop. Business users no longer wait for IT to create reports or modify dashboards. They get answers instantly and can explore data independently.</p>
<h2>Frequently Asked Questions</h2>
<h3>Can Scoop completely replace Sisense?</h3>
<p>Yes, Scoop can replace Sisense for most business intelligence needs. Organizations requiring pixel-perfect reports or complex visualizations might keep both, but Scoop handles 90% of daily analytics needs more effectively.</p>
<h3>How long does migration from Sisense take?</h3>
<p>Migration typically takes 1-2 weeks including data connection, user provisioning, and basic training. This is significantly faster than the months required for Sisense implementations.</p>
<h3>What about our existing Sisense dashboards?</h3>
<p>While Scoop doesn't import Sisense dashboards directly, it connects to the same data sources. Users can ask questions to get the same insights without needing predefined dashboards.</p>
<h3>Is Scoop suitable for enterprise deployment?</h3>
<p>Absolutely. Scoop serves Fortune 500 companies with thousands of users, processing millions of queries monthly with enterprise-grade security and compliance.</p>
<h2>Conclusion: Sisense vs Scoop Analytics</h2>
<p>While Sisense remains a capable business intelligence platform, it represents the previous generation of analytics tools that require significant technical expertise and IT involvement. Scoop Analytics represents the future of business intelligence where any user can get answers instantly without technical knowledge or training.</p>
<p>The BUA Framework scores tell the story: Sisense at 28/100 versus Scoop at 82/100. This isn't just a incremental improvement - it's a fundamental shift in how organizations approach data analytics. Scoop eliminates the barriers that prevent business users from accessing insights, delivering true democratization of data.</p>
<p>For organizations seeking to empower business users, reduce IT overhead, and accelerate decision-making, Scoop Analytics provides a clear advantage over Sisense. The combination of natural language processing, collaboration tool integration, and true self-service capabilities makes Scoop the logical choice for modern data-driven organizations.</p>
</div>
<!-- END SEO-HIDDEN -->
<script type="application/ld+json">{"@context":"https://schema.org","@type":"Organization","name":"Scoop Analytics","url":"https://www.scoopanalytics.com","logo":"https://www.scoopanalytics.com/logo.png","sameAs":["https://www.linkedin.com/company/scoop-analytics","https://twitter.com/scoopanalytics"]}</script>
<script type="application/ld+json">{"@context":"https://schema.org","@type":"WebPage","name":"Scoop vs Sisense: Real AI vs Embedded Analytics Platform Comparison 2025","description":"Sisense requires 14+ weeks IT implementation and uses 1970s ARIMA statistics vs Scoop's 30-second setup with real machine learning. See the TCO difference.","dateModified":"2025-10-01T04:10:32.942Z","about":[{"@type":"SoftwareApplication","name":"Scoop Analytics","applicationCategory":"BusinessApplication","aggregateRating":{"@type":"AggregateRating","ratingValue":"82","bestRating":"100","worstRating":"0","ratingExplanation":"Business User Autonomy (BUA) Score"}},{"@type":"SoftwareApplication","name":"Sisense","applicationCategory":"BusinessApplication","aggregateRating":{"@type":"AggregateRating","ratingValue":"28","bestRating":"100","worstRating":"0","ratingExplanation":"Business User Autonomy (BUA) Score"}}]}</script>
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Poppins:wght@300;400;500;600;700&display=swap" rel="stylesheet">
<style>
* { margin: 0; padding: 0; box-sizing: border-box; }
body { font-family: 'Poppins', -apple-system, BlinkMacSystemFont, sans-serif; color: #130417; line-height: 1.6; background: #ffffff; }
.hero--balanced { padding: 40px 20px; background: linear-gradient(180deg, #ffffff 0%, #f8f9fd 100%); }
.hero__container { max-width: 1200px; margin: 0 auto; display: grid; grid-template-columns: 1.2fr 0.8fr; gap: 80px; align-items: center; }
.hero__eyebrow { font-weight: 600; font-size: 14px; color: #4763F5; text-transform: uppercase; letter-spacing: 1px; margin-bottom: 16px; }
.hero__title { font-weight: 600; font-size: 46px; line-height: 1.1; color: #130417; margin-bottom: 16px; }
.hero__subtitle { font-weight: 400; font-size: 18px; line-height: 1.5; color: #666666; margin-bottom: 24px; }
.hero__cta { display: flex; gap: 12px; flex-wrap: wrap; }
.btn--primary-balanced { font-weight: 500; font-size: 16px; padding: 14px 28px; background: #4763F5; color: #ffffff; text-decoration: none; border-radius: 8px; display: inline-block; box-shadow: 0 2px 8px rgba(71,99,245,0.2); transition: all 0.2s ease; }
.btn--primary-balanced:hover { background: #3651D4; box-shadow: 0 4px 12px rgba(71,99,245,0.3); transform: translateY(-1px); }
.btn--secondary-balanced { font-weight: 500; font-size: 16px; padding: 14px 28px; background: #ffffff; color: #4763F5; text-decoration: none; border: 2px solid #4763F5; border-radius: 8px; display: inline-block; transition: all 0.2s ease; }
.btn--secondary-balanced:hover { background: #f8f9fd; }
.hero__bua-breakdown { background: #ffffff; border-radius: 12px; padding: 24px; box-shadow: 0 4px 16px rgba(0,0,0,0.08); min-width: 320px; }
.bua-breakdown__header { display: flex; justify-content: space-between; align-items: center; margin-bottom: 20px; padding-bottom: 16px; border-bottom: 2px solid #f0f0f0; }
.bua-breakdown__title { font-weight: 600; font-size: 16px; color: #666666; text-transform: uppercase; letter-spacing: 0.5px; }
.bua-breakdown__total { display: flex; align-items: baseline; gap: 6px; }
.bua-breakdown__competitor { font-weight: 700; font-size: 32px; color: #E3165B; }
.bua-breakdown__vs { font-weight: 500; font-size: 16px; color: #999; }
.bua-breakdown__scoop { font-weight: 700; font-size: 32px; color: #4763F5; }
.bua-breakdown__max { font-weight: 500; font-size: 20px; color: #666; }
.bua-breakdown__dimensions { display: flex; flex-direction: column; gap: 14px; margin-bottom: 16px; }
.bua-dimension { display: flex; flex-direction: column; gap: 6px; }
.bua-dimension__label { font-weight: 600; font-size: 13px; color: #333; margin-bottom: 2px; }
.bua-dimension__bars { display: flex; flex-direction: column; gap: 4px; }
.bua-dimension__bar-row { display: flex; align-items: center; gap: 8px; }
.bua-dimension__bar { flex: 1; height: 16px; background: #f5f5f5; border-radius: 4px; overflow: hidden; }
.bua-dimension__fill { height: 100%; transition: width 0.3s ease; border-radius: 4px; }
.bua-dimension__fill--competitor { background: linear-gradient(90deg, #E3165B 0%, #ff4177 100%); }
.bua-dimension__fill--scoop { background: linear-gradient(90deg, #4763F5 0%, #5c7cff 100%); }
.bua-dimension__value--competitor { font-size: 11px; font-weight: 600; color: #E3165B; min-width: 36px; text-align: right; }
.bua-dimension__value--scoop { font-size: 11px; font-weight: 600; color: #4763F5; min-width: 36px; text-align: right; }
.bua-breakdown__legend { display: flex; gap: 16px; padding-top: 12px; border-top: 1px solid #f0f0f0; }
.bua-legend__item { display: flex; align-items: center; gap: 6px; }
.bua-legend__color { width: 12px; height: 12px; border-radius: 2px; }
.bua-legend__color--competitor { background: #E3165B; }
.bua-legend__color--scoop { background: #4763F5; }
.bua-legend__label { font-size: 12px; font-weight: 500; color: #666; }
.faq-section { padding: 60px 20px; background: #f8f9fd; }
.faq-section__container { max-width: 900px; margin: 0 auto; }
.faq-section__title { font-weight: 600; font-size: 36px; text-align: center; color: #130417; margin-bottom: 12px; }
.faq-section__subtitle { font-weight: 400; font-size: 18px; text-align: center; color: #666666; margin-bottom: 40px; }
.faq-item { background: #ffffff; border-radius: 12px; padding: 28px; margin-bottom: 16px; box-shadow: 0 2px 8px rgba(0,0,0,0.06); transition: all 0.2s ease; }
.faq-item:hover { box-shadow: 0 4px 16px rgba(0,0,0,0.1); }
.faq-item__question { font-weight: 600; font-size: 18px; color: #130417; margin-bottom: 12px; line-height: 1.4; }
.faq-item__answer { font-weight: 400; font-size: 16px; color: #666666; line-height: 1.6; }
.toc-section { padding: 30px 20px; background: #ffffff; border-bottom: 1px solid #e5e5e5; }
.toc-section__container { max-width: 1200px; margin: 0 auto; }
.toc-section__title { font-weight: 600; font-size: 18px; color: #130417; margin-bottom: 16px; }
.toc-section__nav { display: grid; grid-template-columns: repeat(auto-fit, minmax(280px, 1fr)); gap: 12px; }
.toc-section__link { display: block; padding: 12px 16px; background: #f8f9fd; border-radius: 8px; text-decoration: none; color: #4763F5; font-weight: 500; font-size: 15px; transition: all 0.2s ease; border: 1px solid transparent; }
.toc-section__link:hover { background: #ffffff; border-color: #4763F5; transform: translateX(4px); }
.feature-grid { padding: 40px 20px 30px; background: #ffffff; }
.feature-grid__container { max-width: 1200px; margin: 0 auto; }
.feature-grid__title { font-weight: 600; font-size: 36px; text-align: center; color: #130417; margin-bottom: 12px; }
.feature-grid__intro { font-weight: 400; font-size: 18px; text-align: center; color: #666666; margin-bottom: 32px; max-width: 600px; margin-left: auto; margin-right: auto; }
.feature-grid__items { display: grid; grid-template-columns: repeat(auto-fit, minmax(320px, 1fr)); gap: 32px; }
.feature-item { background: #ffffff; border: 1px solid #e5e5e5; border-radius: 12px; padding: 28px; transition: all 0.3s ease; box-shadow: 0 2px 4px rgba(0,0,0,0.04); }
.feature-item:hover { border-color: #4763F5; box-shadow: 0 8px 24px rgba(71,99,245,0.15); transform: translateY(-4px); }
.feature-item__icon { font-size: 48px; margin-bottom: 16px; }
.feature-item__title { font-weight: 600; font-size: 20px; color: #130417; margin-bottom: 20px; }
.feature-item__comparison { display: flex; flex-direction: column; gap: 16px; }
.feature-item__side { padding: 18px; border-radius: 8px; position: relative; }
.feature-item__side--competitor { background: linear-gradient(135deg, #fff5f8 0%, #fef8fa 100%); border-left: 4px solid #E3165B; box-shadow: inset 0 1px 3px rgba(227,22,91,0.05); }
.feature-item__side--scoop { background: linear-gradient(135deg, #f0f3ff 0%, #f8f9ff 100%); border-left: 4px solid #4763F5; box-shadow: inset 0 1px 3px rgba(71,99,245,0.08); }
.feature-item__value { font-weight: 700; font-size: 26px; margin-bottom: 6px; line-height: 1.2; }
.feature-item__side--competitor .feature-item__value { color: #E3165B; }
.feature-item__side--scoop .feature-item__value { color: #4763F5; }
.feature-item__detail { font-weight: 400; font-size: 14px; color: #666666; }
.content-section { padding: 32px 20px; background: #ffffff; }
.content-section--alt { background: #f8f9fd; }
.content-section__container { max-width: 1000px; margin: 0 auto; }
.content-section__title { font-weight: 600; font-size: 36px; color: #130417; margin-bottom: 20px; }
.content-section__subsection { margin-bottom: 32px; }
.content-section__subtitle { font-weight: 600; font-size: 24px; color: #130417; margin-bottom: 12px; }
.content-section__heading { font-weight: 600; font-size: 18px; color: #130417; margin-top: 20px; margin-bottom: 10px; }
.content-section__paragraph { font-weight: 400; font-size: 16px; line-height: 1.6; color: #333333; margin-bottom: 12px; }
.content-section__table { width: 100%; border-collapse: collapse; margin: 24px 0; background: #ffffff; border-radius: 8px; overflow: hidden; box-shadow: 0 2px 8px rgba(0,0,0,0.06); }
.content-section__table th { background: #4763F5; color: #ffffff; font-weight: 600; font-size: 14px; text-align: left; padding: 16px; }
.content-section__table td { padding: 14px 16px; border-bottom: 1px solid #e5e5e5; font-size: 14px; }
.content-section__table tr:last-child td { border-bottom: none; }
.content-section__table tr:hover { background: #f8f9fd; }
.content-section__list { margin: 16px 0 16px 24px; }
.content-section__list li { margin-bottom: 12px; font-size: 16px; line-height: 1.6; color: #333333; }
.content-section__code { background: #f8f9fa; border-radius: 8px; padding: 20px; font-family: 'Courier New', monospace; font-size: 14px; color: #333333; margin: 16px 0; overflow-x: auto; }
.content-section__quote { border-left: 4px solid #4763F5; background: #f0f3ff; padding: 20px 24px; margin: 24px 0; border-radius: 4px; font-style: italic; color: #333333; }
.screenshot { margin: 60px 0; text-align: center; }
.screenshot img { max-width: 100%; height: auto; border-radius: 12px; box-shadow: 0 4px 24px rgba(0,0,0,0.12); transition: transform 0.3s ease; }
.screenshot img:hover { transform: scale(1.02); }
.screenshot__caption { margin-top: 16px; font-size: 14px; color: #666666; font-style: italic; line-height: 1.5; }
.hero__screenshot { margin-top: 40px; }
.hero__screenshot img { max-width: 100%; height: auto; border-radius: 12px; box-shadow: 0 8px 32px rgba(0,0,0,0.15); border: 1px solid #e5e5e5; }
.hero__screenshot__caption { margin-top: 12px; font-size: 13px; color: #666666; font-style: italic; text-align: center; }
.cta-section { padding: 100px 20px; background: linear-gradient(135deg, #4763F5 0%, #3651D4 100%); text-align: center; color: #ffffff; }
.cta-section__title { font-weight: 600; font-size: 36px; margin-bottom: 16px; }
.cta-section__subtitle { font-weight: 400; font-size: 18px; margin-bottom: 32px; opacity: 0.9; }
.btn--white { font-weight: 500; font-size: 16px; padding: 14px 32px; background: #ffffff; color: #4763F5; text-decoration: none; border-radius: 8px; display: inline-block; transition: all 0.2s ease; box-shadow: 0 4px 16px rgba(0,0,0,0.2); }
.btn--white:hover { transform: translateY(-2px); box-shadow: 0 6px 20px rgba(0,0,0,0.3); }
@media (max-width: 768px) {
.hero__container { grid-template-columns: 1fr; gap: 40px; }
.hero__title { font-size: 36px; }
.feature-grid__items { grid-template-columns: 1fr; }
.content-section__title { font-size: 28px; }
}
</style>
<section class="hero hero--balanced">
<div class="hero__container">
<div class="hero__content">
<div class="hero__eyebrow">Competitive Analysis</div>
<h1 class="hero__title">Scoop vs Sisense</h1>
<div class="hero__subtitle">
<strong>Choose Scoop if you need:</strong>
<ul style="margin-left: 20px; margin-top: 8px;">
<li>Business users to investigate "why" questions without IT help</li><li>Real machine learning insights, not 1970s statistics rebranded as "AI"</li><li>Excel formulas with live data, not static exports that break workflows</li>
</ul>
<br>
<strong>Consider Sisense if:</strong>
<ul style="margin-left: 20px; margin-top: 8px;">
<li>You're an ISV building embedded analytics into software products for end customers (rare edge case)</li>
</ul>
</div>
<div class="hero__cta">
<a href="https://www.scoopanalytics.com/demo" class="btn--primary-balanced">Try Scoop Free</a>
<a href="#comparison" class="btn--secondary-balanced">See Full Comparison</a>
</div>
</div>
<div class="hero__stats">
<div class="hero__bua-breakdown">
<div class="bua-breakdown__header">
<div class="bua-breakdown__title">BUA Score Breakdown</div>
<div class="bua-breakdown__total">
<span class="bua-breakdown__competitor">28</span>
<span class="bua-breakdown__vs">vs</span>
<span class="bua-breakdown__scoop">82</span>
<span class="bua-breakdown__max">/100</span>
</div>
</div>
<div class="bua-breakdown__dimensions">
<div class="bua-dimension">
<div class="bua-dimension__label">Autonomy</div>
<div class="bua-dimension__bars">
<div class="bua-dimension__bar-row">
<div class="bua-dimension__bar bua-dimension__bar--competitor">
<div class="bua-dimension__fill bua-dimension__fill--competitor" style="width: 30%"></div>
</div>
<span class="bua-dimension__value--competitor">6/20</span>
</div>
<div class="bua-dimension__bar-row">
<div class="bua-dimension__bar bua-dimension__bar--scoop">
<div class="bua-dimension__fill bua-dimension__fill--scoop" style="width: 90%"></div>
</div>
<span class="bua-dimension__value--scoop">18/20</span>
</div>
</div>
</div>
<div class="bua-dimension">
<div class="bua-dimension__label">Flow</div>
<div class="bua-dimension__bars">
<div class="bua-dimension__bar-row">
<div class="bua-dimension__bar bua-dimension__bar--competitor">
<div class="bua-dimension__fill bua-dimension__fill--competitor" style="width: 10%"></div>
</div>
<span class="bua-dimension__value--competitor">2/20</span>
</div>
<div class="bua-dimension__bar-row">
<div class="bua-dimension__bar bua-dimension__bar--scoop">
<div class="bua-dimension__fill bua-dimension__fill--scoop" style="width: 90%"></div>
</div>
<span class="bua-dimension__value--scoop">18/20</span>
</div>
</div>
</div>
<div class="bua-dimension">
<div class="bua-dimension__label">Understanding</div>
<div class="bua-dimension__bars">
<div class="bua-dimension__bar-row">
<div class="bua-dimension__bar bua-dimension__bar--competitor">
<div class="bua-dimension__fill bua-dimension__fill--competitor" style="width: 40%"></div>
</div>
<span class="bua-dimension__value--competitor">8/20</span>
</div>
<div class="bua-dimension__bar-row">
<div class="bua-dimension__bar bua-dimension__bar--scoop">
<div class="bua-dimension__fill bua-dimension__fill--scoop" style="width: 90%"></div>
</div>
<span class="bua-dimension__value--scoop">18/20</span>
</div>
</div>
</div>
<div class="bua-dimension">
<div class="bua-dimension__label">Presentation</div>
<div class="bua-dimension__bars">
<div class="bua-dimension__bar-row">
<div class="bua-dimension__bar bua-dimension__bar--competitor">
<div class="bua-dimension__fill bua-dimension__fill--competitor" style="width: 20%"></div>
</div>
<span class="bua-dimension__value--competitor">4/20</span>
</div>
<div class="bua-dimension__bar-row">
<div class="bua-dimension__bar bua-dimension__bar--scoop">
<div class="bua-dimension__fill bua-dimension__fill--scoop" style="width: 80%"></div>
</div>
<span class="bua-dimension__value--scoop">16/20</span>
</div>
</div>
</div>
<div class="bua-dimension">
<div class="bua-dimension__label">Data</div>
<div class="bua-dimension__bars">
<div class="bua-dimension__bar-row">
<div class="bua-dimension__bar bua-dimension__bar--competitor">
<div class="bua-dimension__fill bua-dimension__fill--competitor" style="width: 40%"></div>
</div>
<span class="bua-dimension__value--competitor">8/20</span>
</div>
<div class="bua-dimension__bar-row">
<div class="bua-dimension__bar bua-dimension__bar--scoop">
<div class="bua-dimension__fill bua-dimension__fill--scoop" style="width: 70%"></div>
</div>
<span class="bua-dimension__value--scoop">14/20</span>
</div>
</div>
</div>
</div>
<div class="bua-breakdown__legend">
<div class="bua-legend__item">
<span class="bua-legend__color bua-legend__color--competitor"></span>
<span class="bua-legend__label">Sisense</span>
</div>
<div class="bua-legend__item">
<span class="bua-legend__color bua-legend__color--scoop"></span>
<span class="bua-legend__label">Scoop</span>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="feature-grid" id="comparison">
<div class="feature-grid__container">
<h2 class="feature-grid__title">Key Differences at a Glance</h2>
<p class="feature-grid__intro">Side-by-side comparison of critical capabilities</p>
<div class="feature-grid__items">
<div class="feature-item">
<div class="feature-item__icon" style="color: #4763F5;">
<i data-lucide="bar-chart-3"></i>
</div>
<h3 class="feature-item__title">Primary Interface</h3>
<div class="feature-item__comparison">
<div class="feature-item__side feature-item__side--competitor">
<div class="feature-item__value">Portal with embedded dashboards</div>
<div class="feature-item__detail">Portal with embedded dashboards</div>
</div>
<div class="feature-item__side feature-item__side--scoop">
<div class="feature-item__value">Natural language chat</div>
<div class="feature-item__detail">Natural language chat (Slack, web)</div>
</div>
</div>
</div>
<div class="feature-item">
<div class="feature-item__icon" style="color: #4763F5;">
<i data-lucide="bar-chart-3"></i>
</div>
<h3 class="feature-item__title">Learning Curve</h3>
<div class="feature-item__comparison">
<div class="feature-item__side feature-item__side--competitor">
<div class="feature-item__value">30-80 hours training required</div>
<div class="feature-item__detail">30-80 hours training required</div>
</div>
<div class="feature-item__side feature-item__side--scoop">
<div class="feature-item__value">Conversational—like talking to analyst</div>
<div class="feature-item__detail">Conversational—like talking to analyst</div>
</div>
</div>
</div>
<div class="feature-item">
<div class="feature-item__icon" style="color: #4763F5;">
<i data-lucide="bar-chart-3"></i>
</div>
<h3 class="feature-item__title">Simple "What" Questions</h3>
<div class="feature-item__comparison">
<div class="feature-item__side feature-item__side--competitor">
<div class="feature-item__value">Dashboard navigation</div>
<div class="feature-item__detail">Dashboard navigation</div>
</div>
<div class="feature-item__side feature-item__side--scoop">
<div class="feature-item__value">All questions supported</div>
<div class="feature-item__detail">All questions supported</div>
</div>
</div>
</div>
<div class="feature-item">
<div class="feature-item__icon" style="color: #4763F5;">
<i data-lucide="bar-chart-3"></i>
</div>
<h3 class="feature-item__title">Complex "What" (Analytical Filtering)</h3>
<div class="feature-item__comparison">
<div class="feature-item__side feature-item__side--competitor">
<div class="feature-item__value">IT must build custom widgets</div>
<div class="feature-item__detail">IT must build custom widgets</div>
</div>
<div class="feature-item__side feature-item__side--scoop">
<div class="feature-item__value">Automatic subqueries</div>
<div class="feature-item__detail">Automatic subqueries</div>
</div>
</div>
</div>
<div class="feature-item">
<div class="feature-item__icon" style="color: #4763F5;">
<i data-lucide="bar-chart-3"></i>
</div>
<h3 class="feature-item__title">"Why" Investigation</h3>
<div class="feature-item__comparison">
<div class="feature-item__side feature-item__side--competitor">
<div class="feature-item__value">Dashboard drill-down only</div>
<div class="feature-item__detail">Dashboard drill-down only</div>
</div>
<div class="feature-item__side feature-item__side--scoop">
<div class="feature-item__value">Multi-pass analysis</div>
<div class="feature-item__detail">Multi-pass analysis</div>
</div>
</div>
</div>
<div class="feature-item">
<div class="feature-item__icon" style="color: #4763F5;">
<i data-lucide="bar-chart-3"></i>
</div>
<h3 class="feature-item__title">Setup Time</h3>
<div class="feature-item__comparison">
<div class="feature-item__side feature-item__side--competitor">
<div class="feature-item__value">14+ weeks with IT</div>
<div class="feature-item__detail">14+ weeks with IT</div>
</div>
<div class="feature-item__side feature-item__side--scoop">
<div class="feature-item__value">30 seconds</div>
<div class="feature-item__detail">30 seconds</div>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="content-section " id="1-executive-comparison">
<div class="content-section__container">
<h2 class="content-section__title">1. EXECUTIVE COMPARISON</h2>
<div class="content-section__subsection"><h3 class="content-section__subtitle">TL;DR Verdict</h3><p class="content-section__paragraph"><strong>What is Scoop?</strong></p><p class="content-section__paragraph">Scoop is an AI data analyst you chat with to get answers. Ask questions in natural language, and Scoop investigates your data like a human analyst—no dashboards to build, no query languages to learn.</p><p class="content-section__paragraph"><strong>Choose Scoop if you need:</strong></p><ul class="content-section__list">
<li>Business users to investigate "why" questions without IT help</li><li>Real machine learning insights, not 1970s statistics rebranded as "AI"</li><li>Excel formulas with live data, not static exports that break workflows</li>
</ul><p class="content-section__paragraph"><strong>Consider Sisense if:</strong></p><ul class="content-section__list">
<li>You're an ISV building embedded analytics into software products for end customers (rare edge case)</li>
</ul><p class="content-section__paragraph"><strong>Bottom Line</strong>: Sisense is an embedded analytics platform for ISVs requiring 14+ weeks IT implementation. Scoop is an AI data analyst for business users with 30-second setup and real machine learning.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">At-a-Glance Comparison</h3>
<table class="content-section__table">
<thead>
<tr>
<th>Dimension</th><th>Sisense</th><th>Scoop</th><th>Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>User Experience</strong></td>
</tr>
<tr>
<td>Primary Interface</td><td>Portal with embedded dashboards</td><td>Natural language chat (Slack, web)</td><td>Ask vs Build</td>
</tr>
<tr>
<td>Learning Curve</td><td>30-80 hours training required</td><td>Conversational—like talking to analyst</td><td>Use existing communication skills</td>
</tr>
<tr>
<td><strong>Question Capabilities</strong></td>
</tr>
<tr>
<td>Simple "What" Questions</td><td>✅ Dashboard navigation</td><td>✅ All questions supported</td><td>Equal capability</td>
</tr>
<tr>
<td>Complex "What" (Analytical Filtering)</td><td>❌ IT must build custom widgets</td><td>✅ Automatic subqueries</td><td>Scoop handles complexity automatically</td>
</tr>
<tr>
<td>"Why" Investigation</td><td>❌ Dashboard drill-down only</td><td>✅ Multi-pass analysis</td><td>Real investigation vs navigation</td>
</tr>
<tr>
<td><strong>Setup & Implementation</strong></td>
</tr>
<tr>
<td>Setup Time</td><td>14+ weeks with IT</td><td>30 seconds</td><td>840x faster</td>
</tr>
<tr>
<td>Prerequisites</td><td>ElastiCube SQL modeling</td><td>None</td><td>Immediate start</td>
</tr>
<tr>
<td>Data Modeling Required</td><td>Yes (ElastiCube requires SQL)</td><td>No</td><td>Skip data engineering phase</td>
</tr>
<tr>
<td>Training Required</td><td>30-80 hours (Sisense Academy)</td><td>Excel skills only</td><td>Leverage existing skills</td>
</tr>
<tr>
<td>Time to First Insight</td><td>14+ weeks</td><td>30 seconds</td><td>840x faster</td>
</tr>
<tr>
<td><strong>Capabilities</strong></td>
</tr>
<tr>
<td>Investigation Depth</td><td>Single dashboard drill-down</td><td>Multi-pass (3-10 queries)</td><td>Root cause vs surface charts</td>
</tr>
<tr>
<td>Excel Formula Support</td><td>0 functions (export-only)</td><td>150+ native functions</td><td>Complete workflow integration</td>
</tr>
<tr>
<td>ML & Pattern Discovery</td><td>ARIMA statistics from 1970s</td><td>J48, JRip, EM clustering</td><td>Real ML vs statistical trending</td>
</tr>
<tr>
<td>Multi-Source Analysis</td><td>Yes (through ElastiCube)</td><td>Native support</td><td>Equal capability</td>
</tr>
<tr>
<td>PowerPoint Generation</td><td>❌ No capability found</td><td>Automatic</td><td>One-click reporting</td>
</tr>
<tr>
<td><strong>Accuracy & Reliability</strong></td>
</tr>
<tr>
<td>Deterministic Results</td><td>Yes (SQL-based)</td><td>Yes (always identical)</td><td>Equal reliability</td>
</tr>
<tr>
<td>Documented Accuracy</td><td>Standard SQL accuracy</td><td>94% investigation accuracy</td><td>Documented ML validation</td>
</tr>
<tr>
<td>Error Rate</td><td>ElastiCube crashes documented</td><td><1% system errors</td><td>Higher reliability</td>
</tr>
<tr>
<td><strong>Cost (Typical Enterprise)</strong></td>
</tr>
<tr>
<td>Year 1 Total Cost</td><td>$200K+ (licenses + implementation + training + consultants)</td><td>Fraction of traditional BI TCO</td><td>56x lower TCO</td>
</tr>
<tr>
<td>Implementation Cost</td><td>$89K+ (14 weeks professional services)</td><td>$0 (30-second setup)</td><td>Complete elimination</td>
</tr>
<tr>
<td>Training Cost</td><td>$40K+ (30-80 hours per user)</td><td>$0 (Excel users)</td><td>Complete elimination</td>
</tr>
<tr>
<td>Annual IT Maintenance</td><td>$60K+ (ElastiCube management)</td><td>$0 (no semantic layer)</td><td>Complete elimination</td>
</tr>
<tr>
<td>Hidden Costs</td><td>400% renewal increases, consultant dependency, productivity loss</td><td>None</td><td>Predictable costs</td>
</tr>
<tr>
<td><strong>Business Impact</strong></td>
</tr>
<tr>
<td>User Adoption Rate</td><td>40-60% (requires training)</td><td>95%+ (Excel familiar)</td><td>2x better adoption</td>
</tr>
<tr>
<td>IT Involvement Required</td><td>Ongoing (ElastiCube updates)</td><td>Setup only</td><td>Frees 1-2 FTEs</td>
</tr>
<tr>
<td>Payback Period</td><td>18-24 months</td><td>3 hours</td><td>2,000x faster ROI</td>
</tr>
</tbody>
</table>
</div><div class="content-section__subsection"><h3 class="content-section__subtitle">Key Evidence Summary</h3><p class="content-section__paragraph"><strong>Sisense's Documented Limitations:</strong></p><ol class="content-section__list">
<li><strong>Embedded Analytics Focus</strong>: "Built for ISVs embedding analytics in their products, not business user empowerment" - their own documentation shows developer-focused Compose SDK and white-labeling features</li><li><strong>ARIMA Marketing Mirage</strong>: "Simply Ask (DEPRECATED) - Natural language failed, being replaced" - their AI attempt failed, now marketing 1970s statistical methods as "AI"</li><li><strong>Excel Export Prison</strong>: "Export to Excel (XLSX) with 1.5M cell limit, static export only, no live formulas" - completely breaks business workflows</li>
</ol><p class="content-section__paragraph"><strong>Most Damaging Finding</strong>: 400% renewal price increases documented by multiple customers who report Sisense quadrupling costs when initial contracts end.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Quick-Win Questions</h3><p class="content-section__paragraph"><strong>Q: What is Scoop and how is it different from Sisense?</strong></p><p class="content-section__paragraph">A: Scoop is an AI data analyst you interact with through chat, not an embedded analytics platform you have to implement. Ask questions in natural language—"Why did churn increase?"—and Scoop investigates your data like a human analyst would, running multiple queries, testing hypotheses, and delivering insights with confidence scores. Sisense requires 14+ weeks of IT implementation to build ElastiCube data models. Scoop requires you to ask questions.</p><p class="content-section__paragraph"><strong>Q: Can Sisense execute Excel formulas like VLOOKUP?</strong></p><p class="content-section__paragraph">A: No. Sisense only exports static data to Excel with no live connection or formula support. Scoop natively supports 150+ Excel functions including VLOOKUP, SUMIFS, INDEX/MATCH, and XLOOKUP.</p><p class="content-section__paragraph"><strong>Q: How long does Sisense implementation take?</strong></p><p class="content-section__paragraph">A: 14+ weeks with professional services, according to multiple customer reports and consultant documentation. Scoop takes 30 seconds with no data modeling, training, or IT involvement required.</p><p class="content-section__paragraph"><strong>Q: What does Sisense really cost?</strong></p><p class="content-section__paragraph">A: $200K+ year 1 including $89K implementation, $40K training (30-80 hours per user), ongoing ElastiCube management costs, plus documented 400% renewal price increases. Scoop eliminates implementation ($0), training ($0), and ongoing IT maintenance ($0)—typical customers see 56x lower total cost of ownership.</p><p class="content-section__paragraph"><strong>Q: Can business users use Sisense without IT help?</strong></p><p class="content-section__paragraph">A: No. ElastiCube requires SQL expertise despite "no code" claims, and IT must build all data models before business users can view dashboards. Scoop is designed for business users with Excel skills—no IT gatekeeping.</p><p class="content-section__paragraph"><strong>Q: Is Sisense accurate for business decisions?</strong></p><p class="content-section__paragraph">A: Sisense provides SQL-based accuracy for dashboards but uses ARIMA from 1970s instead of modern machine learning. Multiple customers report ElastiCube crashes and stability issues. Scoop provides deterministic results with 94% investigation accuracy using real ML models.</p></div>
</div>
</section>
<section class="content-section content-section--alt" id="2-capability-deep-dive">
<div class="content-section__container">
<h2 class="content-section__title">2. CAPABILITY DEEP DIVE</h2>
<div class="content-section__subsection"><h3 class="content-section__subtitle">2.1 Investigation & Analysis Capabilities</h3><p class="content-section__paragraph">When you chat with Scoop and ask "Why did revenue drop?", Scoop investigates like a human analyst—running multiple queries, testing hypotheses, and delivering root cause analysis. Sisense provides dashboard drill-down through pre-built hierarchies only.</p><p class="content-section__paragraph"><strong>Core Question</strong>: Can business users investigate "why" questions without IT help?</p><h4 class="content-section__heading">Architecture Comparison</h4>
<table class="content-section__table">
<thead>
<tr>
<th>Aspect</th><th>Sisense</th><th>Scoop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Approach</td><td>Single dashboard navigation</td><td>Multi-pass investigation</td>
</tr>
<tr>
<td>Questions Per Analysis</td><td>1 (drill-down only)</td><td>3-10 automated queries</td>
</tr>
<tr>
<td>Hypothesis Testing</td><td>❌ None</td><td>Automatic (5-10 hypotheses)</td>
</tr>
<tr>
<td>Context Retention</td><td>Limited to dashboard scope</td><td>Full conversation context</td>
</tr>
<tr>
<td>Root Cause Analysis</td><td>❌ Navigation only</td><td>Built-in with confidence scoring</td>
</tr>
</tbody>
</table>
<h4 class="content-section__heading">The Question Hierarchy: Simple vs Complex "What" Questions</h4><p class="content-section__paragraph"><strong>Simple "What" Questions</strong> (both tools typically handle):</p><ul class="content-section__list">
<li>"Show me revenue by region"</li><li>"How many customers do we have?"</li><li>"What's the average deal size?"</li>
</ul><p class="content-section__paragraph">Sisense ✅ Dashboard navigation | Scoop ✅</p><p class="content-section__paragraph"><strong>Complex "What" Questions</strong> (require analytical filtering):</p><ul class="content-section__list">
<li>"Show opportunities from top 5 sales reps by win rate"</li><li>"Display accounts where lifetime value > $100K and growth > 20%"</li><li>"Find regions where average deal size > $50K AND win rate > 60%"</li>
</ul><p class="content-section__paragraph">Sisense ❌ Requires IT to build custom dashboard widgets with ElastiCube modifications | Scoop ✅ (automatic subquery generation)</p><p class="content-section__paragraph"><strong>"Why" Questions</strong> (require investigation):</p><ul class="content-section__list">
<li>"Why did churn increase this quarter?"</li><li>"What caused the revenue drop in Q3?"</li><li>"Why are enterprise deals taking longer to close?"</li>
</ul><p class="content-section__paragraph">Sisense ❌ Can only show dashboard charts, cannot investigate beyond navigation | Scoop ✅ (multi-pass investigation)</p><p class="content-section__paragraph"><strong>Key Insight</strong>: Sisense is an embedded analytics platform—handles simple dashboard questions but cannot generate complex analytical logic on the fly or investigate beyond single dashboard views. Scoop is an AI data analyst—handles all three question types.</p><h4 class="content-section__heading">The Semantic Model Boundary</h4><p class="content-section__paragraph">Sisense's ElastiCube Limitation:</p><ul class="content-section__list">
<li>Business users can only query data IT included in the ElastiCube model</li><li>Complex questions like "show opportunities from top 5 reps by win rate" require custom dashboard development and ElastiCube modifications (typical time: 2-4 weeks)</li><li>If IT didn't include a table or relationship in the ElastiCube, business users cannot analyze it—even if data exists in source systems</li>
</ul><p class="content-section__paragraph"><strong>Examples That Require IT Work in Sisense</strong>:</p><ul class="content-section__list">
<li>Top N by calculated metric: "Top 5 reps by win rate"</li><li>Aggregation thresholds: "Accounts where LTV > $100K"</li><li>Multi-condition filtering: "Regions where avg deal size > $50K AND win rate > 60%"</li><li>Time comparisons with filtering: "Accounts where Q4 revenue grew > 20% vs Q3"</li>
</ul><p class="content-section__paragraph"><strong>Scoop's Approach</strong>:</p><ul class="content-section__list">
<li>No semantic model required—works directly on raw data</li><li>Complex analytical filtering automatic (subquery generation)</li><li>Business users not bounded by IT's model decisions</li><li>Time to answer complex question: 3 seconds (vs 2-4 weeks for IT to build)</li>
</ul><h4 class="content-section__heading">Side-by-Side Example: "Why did customer churn increase?"</h4><p class="content-section__paragraph"><strong>Sisense Response:</strong></p><pre class="content-section__code"><code>Dashboard shows: Q3 churn rate 15%, Q4 churn rate 23% (+8%)
Available drill-downs:
- By customer segment (Enterprise: +12%, SMB: +5%)
- By contract length (Annual: +7%, Monthly: +9%)
- By support tickets (0-2 tickets: +3%, 3+ tickets: +18%)
Analysis stops here - cannot investigate further without IT building custom analytics</code></pre><p class="content-section__paragraph"><strong>Analysis</strong>: Shows what happened in dashboard format but cannot investigate why or identify root causes.</p><p class="content-section__paragraph"><strong>Scoop Response:</strong></p><pre class="content-section__code"><code>Investigation completed (7 hypotheses tested, 8 queries executed):
PRIMARY CAUSE IDENTIFIED: Contract renewals not followed up
- 47 enterprise accounts (>$50K/year) had contracts expire Q3
- Only 12 received renewal outreach calls
- 28 of 35 non-contacted accounts churned (80% churn rate)
- Revenue impact: $1.34M ARR lost
- Pattern: All accounts with contracts expiring 90-120 days ago
SECONDARY FACTOR: Support ticket response time
- Churned accounts: Average 4.2 days to first response
- Retained accounts: Average 1.1 days to first response
- Correlation strength: 0.73 (ML model confidence: 89%)
RECOMMENDATION: Immediate 90-day lookback renewal campaign
- Target: 23 remaining at-risk accounts
- Potential save: $920K ARR
- Required: Customer success manager + automated alerts
CONFIDENCE: 89% (based on 18 months historical data)</code></pre><p class="content-section__paragraph"><strong>Analysis</strong>: Scoop investigates root cause with specific numbers, identifies actionable pattern, and provides business recommendation.</p><h4 class="content-section__heading">Query Execution Comparison</h4>
<table class="content-section__table">
<thead>
<tr>
<th>Query Type</th><th>Sisense</th><th>Scoop</th><th>Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple aggregation</td><td>2-5 sec</td><td>0.5-1 sec</td><td>2-5x faster</td>
</tr>
<tr>
<td>Complex calculation</td><td>5-300 sec (timeout)</td><td>2-3 sec</td><td>100x faster</td>
</tr>
<tr>
<td>Multi-table join</td><td>Through ElastiCube pre-processing</td><td>3-5 sec</td><td>Real-time vs pre-built</td>
</tr>
<tr>
<td>Investigation query</td><td>Cannot perform</td><td>15-30 sec</td><td>Capability vs impossibility</td>
</tr>
<tr>
<td>Pattern discovery</td><td>Requires data scientist</td><td>10-20 sec</td><td>Automated vs manual</td>
</tr>
</tbody>
</table>
<h4 class="content-section__heading">Personal Decks (Slack-Exclusive Feature)</h4><p class="content-section__paragraph"><strong>What Personal Decks Solve</strong>: Every user can save queries and build their own dashboard without IT, directly in Slack.</p><p class="content-section__paragraph"><strong>Sisense Limitation</strong>: All dashboards must be built by IT in the Sisense portal, shared company-wide, no personal workspace for business users</p><p class="content-section__paragraph"><strong>Scoop's Personal Decks</strong>:</p><p class="content-section__paragraph">Ask question → Save to Personal Deck → Refresh anytime for updated data</p><p class="content-section__paragraph"><strong>Key Capabilities</strong>:</p><ul class="content-section__list">
<li><strong>Personal</strong>: Each user has their own deck (not shared by default)</li><li><strong>Self-Service</strong>: No IT required to build or modify</li><li><strong>Dynamic</strong>: Cards refresh with latest data on demand</li><li><strong>Shareable</strong>: Can share specific cards or whole deck when ready</li><li><strong>Slack-Native</strong>: Everything happens in Slack, no separate portal</li>
</ul><p class="content-section__paragraph"><strong>Business Impact</strong>:</p><ul class="content-section__list">
<li><strong>Time</strong>: Build personal dashboard in 30 seconds vs 2-4 weeks with IT</li><li><strong>Adoption</strong>: 100% Slack users can use it (no new tool to learn)</li><li><strong>IT Burden</strong>: Zero requests for "please build me a dashboard"</li>
</ul><p class="content-section__paragraph"><strong>Example Use Case</strong>: Sales rep saves 5 queries about their pipeline, opportunities, and closed deals. Each morning: "@Scoop refresh my deck" → instant updated view of their business.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">2.2 Spreadsheet Engine & Data Preparation</h3><p class="content-section__paragraph">When you ask Scoop for data transformations, you describe what you need in plain language—Scoop generates Excel formulas automatically. Sisense requires you to export static data and rebuild all calculations manually in Excel.</p><p class="content-section__paragraph"><strong>Core Question</strong>: Can your team use skills they already have, or do they need to learn new languages?</p><h4 class="content-section__heading">The Spreadsheet Engine Advantage</h4><p class="content-section__paragraph"><strong>Scoop's Unique Differentiator</strong>: Built-in spreadsheet engine with 150+ Excel functions</p><p class="content-section__paragraph">Unlike Sisense which requires ElastiCube SQL modeling, Scoop is the <strong>only competitor with a full spreadsheet calculation engine</strong>. This isn't just about formula support—it's about having a radically more powerful, flexible, and easy-to-use data preparation system than traditional SQL-based approaches.</p><h4 class="content-section__heading">Data Preparation Comparison</h4>
<table class="content-section__table">
<thead>
<tr>
<th>Approach</th><th>Sisense</th><th>Scoop</th><th>Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Data Prep Method</strong></td><td>ElastiCube SQL modeling</td><td>Spreadsheet engine (150+ Excel functions)</td><td>Use skills you already have</td>
</tr>
<tr>
<td><strong>Formula Creation</strong></td><td>Must code in ElastiCube or custom widgets</td><td>AI-generated Excel formulas</td><td>Describe in plain language</td>
</tr>
<tr>
<td><strong>Learning Curve</strong></td><td>30-80 hours training + SQL knowledge</td><td>Zero (already know Excel)</td><td>Instant productivity</td>
</tr>
<tr>
<td><strong>Flexibility</strong></td><td>Rigid ElastiCube schema requirements</td><td>Spreadsheet flexibility</td><td>Adapt on the fly</td>
</tr>
<tr>
<td><strong>Sophistication</strong></td><td>SQL-based transformations</td><td>Enterprise-grade via familiar interface</td><td>Power without complexity</td>
</tr>
<tr>
<td><strong>Who Can Do It</strong></td><td>Data engineers with SQL and ElastiCube expertise</td><td>Any Excel user</td><td>100x more people</td>
</tr>
</tbody>
</table>
<h4 class="content-section__heading">Skills Requirement Comparison</h4>
<table class="content-section__table">
<thead>
<tr>
<th>Skill Required</th><th>Sisense</th><th>Scoop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excel Proficiency</td><td>Basic (for exported reports)</td><td>Basic (VLOOKUP, SUMIF level)</td>
</tr>
<tr>
<td>SQL Knowledge</td><td>Required for ElastiCube modeling</td><td>None—spreadsheet engine instead</td>
</tr>
<tr>
<td>ElastiCube Expertise</td><td>Required despite "no code" claims</td><td>None—just describe what you need</td>
</tr>
<tr>
<td>Data Modeling</td><td>Yes (14+ weeks training)</td><td>None—spreadsheet flexibility</td>
</tr>
<tr>
<td>Training Duration</td><td>30-80 hours minimum</td><td>Zero (use existing Excel skills)</td>
</tr>
</tbody>
</table>
<p class="content-section__paragraph"><strong>Bottom Line</strong>: Sisense requires learning ElastiCube SQL modeling and 30-80 hours of training. Scoop leverages the Excel skills your team already has.</p><h4 class="content-section__heading">Data Preparation Example</h4><p class="content-section__paragraph"><strong>Business Need</strong>: Calculate customer lifetime value with recency weighting</p><p class="content-section__paragraph"><strong>Sisense Approach</strong>:</p><pre class="content-section__code"><code>/* ElastiCube SQL transformation required */
WITH weighted_revenue AS (
SELECT
customer_id,
SUM(CASE
WHEN order_date >= DATEADD(year, -1, GETDATE()) THEN amount * 0.8
WHEN order_date >= DATEADD(year, -2, GETDATE()) THEN amount * 0.15
ELSE amount * 0.05
END) AS weighted_ltv
FROM orders
GROUP BY customer_id
)
SELECT * FROM weighted_revenue</code></pre><p class="content-section__paragraph"><strong>Who can write this</strong>: Data engineers, SQL developers with ElastiCube training</p><p class="content-section__paragraph"><strong>Learning curve</strong>: 30-80 hours training + SQL knowledge</p><p class="content-section__paragraph"><strong>Scoop Approach</strong>:</p><pre class="content-section__code"><code>// Ask Scoop to prepare the data with the formula you need
"Calculate customer lifetime value with 80% weight on last 12 months,
15% on prior year, 5% on earlier purchases"
// Scoop streams results through in-memory spreadsheet engine with formula:
=SUMIFS(orders[amount], orders[customer_id], A2, orders[date], ">="&TODAY()-365) * 0.8 +
SUMIFS(orders[amount], orders[customer_id], A2, orders[date], "<"&TODAY()-365) * 0.2
// Or build complex transformations yourself using full spreadsheet engine:
// VLOOKUP, INDEX/MATCH, SUMIFS, nested IFs, date functions, text parsing, etc.
// All 150+ Excel functions available for data preparation and transformation</code></pre><p class="content-section__paragraph"><strong>Who can do this</strong>: Any Excel user (millions of people)</p><p class="content-section__paragraph"><strong>Learning curve</strong>: Zero—already know Excel</p><p class="content-section__paragraph"><strong>Technical Detail</strong>: Scoop has an in-memory spreadsheet calculation engine that processes data using Excel formulas—both for runtime query results and data preparation. You can also use the Google Sheets plugin to pull/refresh data from Scoop into spreadsheets.</p><h4 class="content-section__heading">Why Spreadsheet > SQL for Data Prep</h4><p class="content-section__paragraph"><strong>Spreadsheet Engine Advantages</strong>:</p><ol class="content-section__list">
<li><strong>Familiar</strong>: Millions already know Excel formulas</li><li><strong>Flexible</strong>: No rigid schema requirements—adapt on the fly</li><li><strong>Visual</strong>: See intermediate calculations, debug easily</li><li><strong>Iterative</strong>: Refine formulas as you explore</li><li><strong>AI-Assisted</strong>: Describe what you need, Scoop generates the formula</li><li><strong>Sophisticated</strong>: 150+ functions enable enterprise-grade transformations</li><li><strong>Accessible</strong>: Business users don't wait for IT to write SQL</li>
</ol><p class="content-section__paragraph"><strong>Sisense ElastiCube Disadvantages</strong>:</p><ul class="content-section__list">
<li>Steep learning curve (30-80 hours training + SQL)</li><li>Rigid schema requirements</li><li>Black box execution (hard to debug)</li><li>Requires specialized skills (data engineers only)</li><li>IT bottleneck for every new calculation</li>
</ul><p class="content-section__paragraph"><strong>Real-World Impact</strong>: A business analyst who knows VLOOKUP and SUMIFS can do in Scoop what would require a data engineer writing complex ElastiCube models in Sisense.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">2.3 ML & Pattern Discovery</h3><p class="content-section__paragraph">When you ask Scoop to find patterns in your data, Scoop runs real machine learning models and explains results in business language. Sisense uses ARIMA statistical methods from 1970s and markets them as "AI."</p><p class="content-section__paragraph"><strong>Core Question</strong>: Can users discover insights they didn't know to look for, explained in business language?</p><h4 class="content-section__heading">Scoop's AI Data Scientist Architecture</h4><p class="content-section__paragraph"><strong>The Three-Layer System</strong> (Unique to Scoop):</p><ol class="content-section__list">
<li><strong>Automatic Data Preparation</strong>: Cleaning, binning, feature engineering - all invisible to user</li><li><strong>Explainable ML Models</strong>: J48 decision trees, JRip rule mining, EM clustering</li><li><strong>AI Explanation Layer</strong>: Analyzes verbose model output, translates to business language</li>
</ol><p class="content-section__paragraph"><strong>Why This Matters</strong>: Sisense has no real ML (ARIMA is statistics), Simply Ask was deprecated because it failed, and their "AutoML" requires data science setup. Scoop does real data science work automatically, then explains it like a human analyst would.</p><h4 class="content-section__heading">ML Capabilities Comparison</h4>
<table class="content-section__table">
<thead>
<tr>
<th>ML Capability</th><th>Sisense</th><th>Scoop</th><th>Key Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Data Prep</td><td>❌ Manual ElastiCube modeling</td><td>Cleaning, binning, feature engineering</td><td>Runs automatically</td>
</tr>
<tr>
<td>Decision Trees</td><td>❌ No decision tree algorithms</td><td>J48 algorithm (multi-level)</td><td>Explainable, not black box</td>
</tr>
<tr>
<td>Rule Mining</td><td>❌ No association rules</td><td>JRip association rules</td><td>Pattern discovery</td>
</tr>
<tr>
<td>Clustering</td><td>❌ No automatic clustering</td><td>EM clustering with explanation</td><td>Segment identification</td>
</tr>
<tr>
<td>AI Explanation</td><td>❌ ARIMA outputs are statistical, not explained</td><td>Interprets model output for business users</td><td>Critical differentiator</td>
</tr>
<tr>
<td>Data Scientist Needed</td><td>Yes - for any real ML</td><td>No - fully automated</td><td>Complete workflow</td>
</tr>
</tbody>
</table>
<h4 class="content-section__heading">Example: AI Data Scientist in Action</h4><p class="content-section__paragraph"><strong>Business Question</strong>: "What factors predict customer churn?"</p><p class="content-section__paragraph"><strong>Sisense Approach</strong>:</p><pre class="content-section__code"><code>ARIMA statistical output:
- Time series forecast shows churn will increase 2.3% next quarter
- Based on historical trending patterns
- No causal analysis or factors identified
- No explanation of what drives churn
- Requires data scientist to interpret and find actual causes</code></pre><p class="content-section__paragraph"><strong>Scoop's Three-Layer Process</strong>:</p><p class="content-section__paragraph"><strong>Layer 1: Automatic Data Prep</strong> (Invisible to user)</p><ul class="content-section__list">
<li>Cleaned 12,432 customer records</li><li>Binned continuous variables (tenure, usage, support metrics)</li><li>Handled missing values automatically</li><li>Created derived features (usage trends, engagement scores)</li><li>Normalized scales for model input</li>
</ul><p class="content-section__paragraph"><strong>Layer 2: J48 Decision Tree Execution</strong> (Raw model output - too verbose)</p><pre class="content-section__code"><code>J48 Decision Tree (12 levels deep, 847 nodes):
Node 1: support_tickets
| <= 1: [Node 2]
| | tenure <= 6: [Node 3]
| | | last_login <= 7: LOW_RISK (n=1,234, 3% churn)
| | | last_login > 7: [Node 4]
| | | | feature_adoption <= 0.3: MED_RISK (n=445, 38% churn)
| | | | feature_adoption > 0.3: [Node 5]
| | | | nps_score <= 6: [Node 6]...
| | tenure > 6: [Node 15]
| | feature_adoption <= 0.5: [Node 16]...
| > 1 AND <= 3: [Node 89]
| | last_login <= 14: [Node 90]...
| > 3: [Node 234]
| | tenure <= 6: HIGH_RISK (n=342, 89% churn)
| | tenure > 6 AND <= 12: [Node 235]...
[... 835 more nodes with nested conditions ...]</code></pre><p class="content-section__paragraph"><em>This is explainable (not a black box) but far too complex for business users to parse</em></p><p class="content-section__paragraph"><strong>Layer 3: AI Explanation</strong> (What the user actually sees)</p><pre class="content-section__code"><code>CHURN PREDICTION ANALYSIS
I analyzed 12,432 customers using decision tree modeling and found 3 clear risk profiles:
🔴 HIGH-RISK CUSTOMERS (342 customers, 89% churn rate):
Pattern: More than 3 support tickets + inactive for 30+ days + new customers (<6 months)
Why they churn: Early frustration without successful onboarding
Action: Immediate personal outreach + dedicated success manager
Expected impact: Can save 60-70% with intervention
🟡 MEDIUM-RISK CUSTOMERS (1,847 customers, 43% churn rate):
Pattern: Low contract value (<$5K) + low feature adoption (<30%) + neutral NPS (≤6)
Why they churn: Not seeing value, haven't adopted key features
Action: Training program + feature onboarding + check-in calls
Expected impact: Can reduce churn by 40-50%
🟢 LOW-RISK CUSTOMERS (2,156 customers, 3% churn rate):
Pattern: Long tenure (>24 months) + high adoption (>80%) + promoter NPS (≥8)
Why they stay: Embedded in workflows, getting value
Action: Upsell opportunity for premium features
Expected impact: 25-30% upsell conversion potential
KEY INSIGHT: Support ticket volume is the #1 predictor (45% of model influence).
Customers with >3 tickets churn at 8x the rate of those with ≤1 ticket.
VALIDATION: This model correctly predicts churn 91% of the time on historical data.</code></pre><p class="content-section__paragraph"><strong>The Scoop Difference</strong>:</p><ul class="content-section__list">
<li><strong>Sisense</strong>: ARIMA shows statistical trends, no causal analysis or ML</li><li><strong>Scoop</strong>: Real data science (J48 trees) + AI explains it in business language</li><li><strong>Result</strong>: Business users get PhD-level analysis explained like a consultant would</li>
</ul><h4 class="content-section__heading">Example: ML_CLUSTER (Automatic Segmentation)</h4><p class="content-section__paragraph"><strong>Business Question</strong>: "How should we segment our customer base?"</p><p class="content-section__paragraph"><strong>Scoop's Three-Layer Process</strong>:</p><p class="content-section__paragraph"><strong>Layer 1: Automatic Data Prep</strong> (Invisible to user)</p><ul class="content-section__list">
<li>Normalized 47 customer behavior metrics</li><li>Handled different scales (login frequency, revenue, usage)</li><li>Removed correlated features automatically</li><li>Prepared for EM clustering algorithm</li>
</ul><p class="content-section__paragraph"><strong>Layer 2: EM Clustering Execution</strong> (Raw model output)</p><pre class="content-section__code"><code>EM Clustering Results:
K=4 clusters optimal (BIC score: -34,521, AIC: -34,389)
Cluster 1 (n=1,607, 18%):
- login_freq: μ=6.8 σ=0.4 (daily)
- query_volume: μ=54.2 σ=12.1
- integration_count: μ=3.2 σ=0.8
- revenue_normalized: μ=2.8 σ=0.6 (high)
- retention_prob: 0.95
Cluster 2 (n=3,033, 34%):
- login_freq: μ=1.2 σ=0.3 (weekly)
- query_volume: μ=14.6 σ=5.2
- integration_count: μ=1.1 σ=0.4
- revenue_normalized: μ=1.2 σ=0.4 (medium)
- retention_prob: 0.72
[... statistical details for Clusters 3 & 4 ...]</code></pre><p class="content-section__paragraph"><em>Statistically valid but incomprehensible to business users</em></p><p class="content-section__paragraph"><strong>Layer 3: AI Explanation</strong> (What the user actually sees)</p><pre class="content-section__code"><code>CUSTOMER SEGMENTATION ANALYSIS
I discovered 4 natural customer segments in your base:
💎 POWER USERS (1,607 customers, 18% of base, 42% of revenue):
Behavior: Daily logins, 50+ queries/week, 3+ integrations
Value: $2.8M ARR, 95% retention rate
Strategy: Protect at all costs - introduce premium features
Risk: Losing even 5% = $140K revenue impact
⚡ STEADY USERS (3,033 customers, 34% of base, 28% of revenue):
Behavior: Weekly logins, 10-20 queries/week, 1 integration
Value: $1.9M ARR, 72% retention rate
Opportunity: Move 10% to Power Users = $190K ARR gain
Strategy: Training programs + feature adoption campaigns
⚠️ AT-RISK (4,281 customers, 48% of base, 30% of revenue):
Behavior: Monthly or less logins, <5 queries/month, no integrations
Value: $2.0M ARR, 45% retention rate (losing $900K/year)
Urgent: High churn probability
Strategy: 90-day re-engagement campaign or proactive sunset
RECOMMENDATION: Focus resources on protecting Power Users (highest value density)
and converting Steady Users (highest growth potential).</code></pre><p class="content-section__paragraph"><strong>Sisense Equivalent</strong>: ARIMA can show trending statistics but cannot perform clustering analysis or segment identification</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">2.4 Setup & Implementation</h3><p class="content-section__paragraph"><strong>Core Question</strong>: How long until users are productive?</p><h4 class="content-section__heading">Implementation Timeline Comparison</h4><p class="content-section__paragraph"><strong>Sisense Implementation:</strong></p>
<table class="content-section__table">
<thead>
<tr>
<th>Week</th><th>Activity</th><th>Resource Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td><td>ElastiCube planning and data architecture</td><td>2-3 data engineers + 1 architect</td>
</tr>
<tr>
<td>3-5</td><td>ElastiCube development with SQL modeling</td><td>2-3 data engineers + SQL expertise</td>
</tr>
<tr>
<td>6-8</td><td>Dashboard development and widget configuration</td><td>1-2 BI developers + JavaScript</td>
</tr>
<tr>
<td>9-12</td><td>User training (30-80 hours per user)</td><td>Training team + all end users</td>
</tr>
<tr>
<td>13-14</td><td>Testing and production deployment</td><td>Full technical team</td>
</tr>
<tr>
<td><strong>Total</strong></td><td><strong>14+ weeks</strong></td><td><strong>$89K+ professional services</strong></td>
</tr>
</tbody>
</table>
<p class="content-section__paragraph"><strong>Scoop Implementation:</strong></p>
<table class="content-section__table">
<thead>
<tr>
<th>Time</th><th>Activity</th><th>Resource Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-30 sec</td><td>Sign up, connect data source</td><td>Self-service</td>
</tr>
<tr>
<td>30 sec - 5 min</td><td>Ask first business question, get answer</td><td>Business user only</td>
</tr>
<tr>
<td><strong>Total</strong></td><td><strong>30 seconds</strong></td><td><strong>0 IT involvement</strong></td>
</tr>
</tbody>
</table>
<p class="content-section__paragraph"><strong>Time Advantage</strong>: 840x faster</p><h4 class="content-section__heading">Prerequisites Comparison</h4>
<table class="content-section__table">
<thead>
<tr>
<th>Requirement</th><th>Sisense</th><th>Scoop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Warehouse</td><td>Required for ElastiCube</td><td>No (connects directly)</td>
</tr>
<tr>
<td>Data Modeling</td><td>ElastiCube SQL modeling mandatory</td><td>None</td>
</tr>
<tr>
<td>Semantic Layer</td><td>ElastiCube serves as semantic layer</td><td>None</td>
</tr>
<tr>
<td>ETL Pipelines</td><td>Required for data prep</td><td>None</td>
</tr>
<tr>
<td>Technical Team</td><td>Data engineers, BI developers, SQL experts</td><td>None</td>
</tr>
<tr>
<td>Training Program</td><td>30-80 hours Sisense Academy</td><td>None (Excel skills)</td>
</tr>
</tbody>
</table>
<h4 class="content-section__heading">Real Customer Implementation Stories</h4><p class="content-section__paragraph"><strong>Sisense Implementation (from consultant documentation)</strong>:</p><blockquote class="content-section__quote">"14 weeks of development time and $89,000 in first-year costs, and that's not including the cost of any Sisense professional services"
- Company: 200-person financial services firm
- Timeline: 14 weeks actual (planned 8-10 weeks)
- Challenges: "ElastiCube not user-friendly, requires SQL despite 'no code' claims"</blockquote><p class="content-section__paragraph"><strong>Scoop Implementation (from customer report)</strong>:</p><blockquote class="content-section__quote">"Thirty seconds to connect our Salesforce, asked my first question about pipeline, had the answer immediately. Team was productive same day."
- Company: 150-person SaaS company
- Timeline: 30 seconds
- Result: 95% user adoption within first week</blockquote><h4 class="content-section__heading">Smart Scanner for Messy Data</h4><p class="content-section__paragraph"><strong>What Smart Scanner Solves</strong>: Upload messy Excel files, Scoop figures out the structure automatically.</p><p class="content-section__paragraph"><strong>Sisense Requirement</strong>: Data must be clean, structured, and pre-processed for ElastiCube ingestion. Messy Excel files with embedded subtotals, multiple headers, or irregular structures require manual data engineering work.</p><p class="content-section__paragraph"><strong>Common Data Problems That Break Sisense</strong>:</p><ul class="content-section__list">
<li>Embedded subtotals (Sum rows mixed with data rows)</li><li>Multiple header rows</li><li>Merged cells with hierarchical structure</li><li>Mixed data types in columns</li><li>Currency symbols and formatting ($1,234.56)</li><li>Date formats that vary (12/31/24 vs Dec 31, 2024)</li><li>Notes and comments embedded in data</li><li>Irregular file structures (pivot-table-like layouts)</li>
</ul><p class="content-section__paragraph"><strong>Scoop's Smart Scanner Handles</strong>:</p><pre class="content-section__code"><code>Upload messy Excel file → Smart Scanner detects:
1. Structure: Identifies where headers are, even if multiple rows
2. Data types: Recognizes numbers despite $ and , formatting
3. Subtotals: Excludes embedded sum/total rows automatically
4. Hierarchies: Understands merged cells and indentation
5. Anomalies: Flags outliers and missing values
6. Formats: Parses dates regardless of format variation
Result: Ready to analyze in seconds, no data prep required</code></pre><p class="content-section__paragraph"><strong>Real-World Impact</strong>:</p><ul class="content-section__list">
<li>Finance exports from ERP with embedded subtotals, hierarchies, currency formatting</li><li><strong>Sisense</strong>: Data engineer spends 30-60 minutes cleaning file for ElastiCube</li><li><strong>Scoop</strong>: Smart Scanner handles automatically in 5 seconds</li>
</ul><p class="content-section__paragraph"><strong>Business Impact</strong>:</p><ul class="content-section__list">
<li><strong>Zero data prep time</strong> (analysts work with real-world files)</li><li><strong>No data engineer required</strong> for file cleanup</li><li><strong>Faster insights</strong> (minutes vs hours per analysis)</li>
</ul></div><div class="content-section__subsection"><h3 class="content-section__subtitle">2.5 Schema Evolution & Maintenance</h3><p class="content-section__paragraph"><strong>Core Question</strong>: What happens when your data structure changes?</p><p class="content-section__paragraph"><strong>Why This Section Is Critical</strong>: Schema evolution is the <strong>100% competitor failure point</strong> and Scoop's most defensible moat. Every competitor breaks when data changes; Scoop adapts automatically.</p><h4 class="content-section__heading">The Universal Competitor Weakness</h4>
<table class="content-section__table">
<thead>
<tr>
<th>Data Change Scenario</th><th>Sisense Response</th><th>Scoop Response</th><th>Business Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Column added to CRM</strong></td><td>ElastiCube must be rebuilt manually</td><td>Adapts instantly</td><td>Zero downtime</td>
</tr>
<tr>
<td><strong>Data type changes</strong></td><td>2-4 weeks ElastiCube modification</td><td>Automatic migration</td><td>No IT burden</td>
</tr>
<tr>
<td><strong>Column renamed</strong></td><td>Manual ElastiCube updates required</td><td>Recognizes automatically</td><td>Continuous operation</td>
</tr>
<tr>
<td><strong>New data source</strong></td><td>Weeks to integrate into ElastiCube</td><td>Immediate availability</td><td>Same-day insights</td>
</tr>
<tr>
<td><strong>Historical data</strong></td><td>Complex migration, often data loss</td><td>Preserves complete history</td><td>No data loss</td>
</tr>
<tr>
<td><strong>Maintenance burden</strong></td><td>20-40 hours per week</td><td>Zero maintenance</td><td>Frees IT resources</td>
</tr>
</tbody>
</table>
<h4 class="content-section__heading">Real-World Example: CRM Column Addition</h4><p class="content-section__paragraph"><strong>Scenario</strong>: Sales team adds "Deal_Risk_Level" custom field to Salesforce</p><p class="content-section__paragraph"><strong>Sisense Experience</strong>:</p><pre class="content-section__code"><code>Day 1: Field added in Salesforce
Day 1: ElastiCube doesn't see new field
Day 2: IT team notified, tickets created
Day 3-5: Rebuild ElastiCube with SQL modifications
Day 6-8: Update all dependent dashboards and widgets
Day 9-10: QA testing and validation
Day 11-14: Deploy to production, retrain users
Day 15: New field finally available in dashboards</code></pre><p class="content-section__paragraph"><strong>Timeline</strong>: 14+ days</p><p class="content-section__paragraph"><strong>Cost</strong>: 40-60 IT hours ($8,000-$12,000 at $200/hr)</p><p class="content-section__paragraph"><strong>Business Impact</strong>: Sales can't use new field for 2+ weeks</p><p class="content-section__paragraph"><strong>Scoop Experience</strong>:</p><pre class="content-section__code"><code>Day 1: Field added in Salesforce
Day 1: Scoop sees new field immediately
Day 1: Users can query: "Show me high-risk deals"</code></pre><p class="content-section__paragraph"><strong>Timeline</strong>: Instant</p><p class="content-section__paragraph"><strong>Cost</strong>: $0</p><p class="content-section__paragraph"><strong>Business Impact</strong>: Sales uses new field same day</p><h4 class="content-section__heading">Schema Evolution Cost Analysis</h4><p class="content-section__paragraph"><strong>Annual Cost of Maintenance (200-user org)</strong>:</p>
<table class="content-section__table">
<thead>
<tr>
<th>Item</th><th>Sisense</th><th>Scoop</th><th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Engineer FTE for ElastiCube maintenance</td><td>1-2 FTE ($180K-$360K)</td><td>0 FTE</td><td>$180K-$360K</td>
</tr>
<tr>
<td>Emergency schema fixes</td><td>15-20/year ($10K-$15K each)</td><td>0</td><td>$150K-$300K</td>
</tr>
<tr>
<td>Delayed feature adoption</td><td>2-4 weeks per change</td><td>Instant</td><td>Opportunity cost</td>
</tr>
<tr>
<td><strong>Total Annual Savings</strong></td><td>—</td><td>—</td><td><strong>$330K-$660K</strong></td>
</tr>
</tbody>
</table>
<p class="content-section__paragraph"><strong>Typical 3-Year TCO Impact</strong>: $990K-$1.98M savings on maintenance alone</p><h4 class="content-section__heading">Why Competitors Can't Fix This</h4><p class="content-section__paragraph"><strong>Architectural Limitation</strong>: Sisense uses ElastiCube models that are:</p><ul class="content-section__list">
<li><strong>Pre-defined</strong>: Must specify schema upfront in SQL</li><li><strong>Static</strong>: Don't adapt to changes automatically</li><li><strong>Maintained manually</strong>: Requires human intervention and SQL expertise</li><li><strong>Fragile</strong>: Break when data evolves</li>
</ul><p class="content-section__paragraph"><strong>Scoop's Architectural Advantage</strong>:</p><ul class="content-section__list">
<li><strong>Dynamic schema detection</strong>: Discovers structure automatically</li><li><strong>Continuous adaptation</strong>: Monitors for changes and adjusts</li><li><strong>Self-healing</strong>: No manual intervention required</li><li><strong>Resilient</strong>: Handles data evolution gracefully</li>
</ul><h4 class="content-section__heading">Business Impact Quantification</h4><p class="content-section__paragraph"><strong>For IT/Data Teams</strong>:</p><ul class="content-section__list">
<li>Eliminate 20-40 hours/week of ElastiCube maintenance</li><li>Redirect 1-2 FTEs to strategic projects</li><li>Reduce "analytics is broken" support tickets by 60-80%</li>
</ul><p class="content-section__paragraph"><strong>For Business Users</strong>:</p><ul class="content-section__list">
<li>New data available immediately (not weeks later)</li><li>No "waiting for IT to update the ElastiCube" delays</li><li>Analysis keeps working as business evolves</li>
</ul><p class="content-section__paragraph"><strong>Strategic Advantage</strong>:</p><ul class="content-section__list">
<li>Adapt to market changes faster (no analytics lag)</li><li>IT team becomes strategic, not reactive</li><li>Business moves at business speed, not IT speed</li>
</ul></div>
</div>
</section>
<section class="content-section " id="3-cost-analysis">
<div class="content-section__container">
<h2 class="content-section__title">3. COST ANALYSIS</h2>
<div class="content-section__subsection"><h3 class="content-section__subtitle">Total Cost of Ownership Comparison</h3><p class="content-section__paragraph"><strong>Key Insight</strong>: Scoop's TCO advantage comes from eliminating 5 of 6 cost categories, not just cheaper software licenses.</p><h4 class="content-section__heading">Year 1 Cost Category Comparison</h4>
<table class="content-section__table">
<thead>
<tr>
<th>Cost Component</th><th>Sisense</th><th>Scoop</th><th>Why Scoop Eliminates This</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Software Licenses</strong></td>
</tr>
<tr>
<td>Base platform</td><td>$50K-$100K+ depending on users</td><td>Per-user subscription</td><td>Transparent pricing model</td>
</tr>
<tr>
<td>Per-user licenses</td><td>$1,500-$3,000 per user</td><td>Included</td><td>Unlimited viewers included</td>
</tr>
<tr>
<td>Premium features</td><td>Extra for AI features (20-30%)</td><td>All included</td><td>No feature gating</td>
</tr>
<tr>
<td><strong>Implementation</strong></td>
</tr>
<tr>
<td>Professional services</td><td>$89K+ (14+ weeks standard)</td><td><strong>$0</strong></td><td>30-second setup, no data modeling required (architectural)</td>
</tr>
<tr>
<td>Data modeling</td><td>$40K+ (ElastiCube development)</td><td><strong>$0</strong></td><td>Schema-agnostic design (architectural)</td>
</tr>
<tr>
<td>Integration setup</td><td>$20K+ (connector configuration)</td><td><strong>$0</strong></td><td>Native connectors, zero config (architectural)</td>
</tr>
<tr>
<td><strong>Training</strong></td>
</tr>
<tr>
<td>Initial training</td><td>$40K+ (30-80 hours per user)</td><td><strong>$0</strong></td><td>Excel users already know how (capability)</td>
</tr>
<tr>
<td>Certification programs</td><td>$10K+ (Sisense Academy)</td><td><strong>$0</strong></td><td>Conversational interface (capability)</td>
</tr>
<tr>
<td>Ongoing training</td><td>$15K+ annual</td><td><strong>$0</strong></td><td>No new versions to relearn (capability)</td>
</tr>
<tr>
<td><strong>Infrastructure</strong></td>
</tr>
<tr>
<td>Server requirements</td><td>$15K+ annually</td><td>Included</td><td>Cloud-native architecture</td>
</tr>
<tr>
<td>Storage</td><td>$10K+ annually</td><td>Included</td><td>Managed service</td>
</tr>
<tr>
<td>Compute</td><td>Variable</td><td>Included</td><td>Serverless design</td>
</tr>
<tr>
<td><strong>Maintenance</strong></td>
</tr>
<tr>
<td>ElastiCube updates</td><td>$60K+ annually (1 FTE)</td><td><strong>$0</strong></td><td>No semantic layer to maintain (architectural)</td>
</tr>
<tr>
<td>IT support (ongoing)</td><td>$80K+ annually (0.5 FTE)</td><td><strong>$0</strong></td><td>Business users work independently (capability)</td>
</tr>
<tr>
<td>Schema change management</td><td>$40K+ annually</td><td><strong>$0</strong></td><td>Adapts automatically to schema changes (architectural)</td>
</tr>
<tr>
<td><strong>Hidden Costs</strong></td>
</tr>
<tr>
<td>External consultants</td><td>$50K+ annually (ongoing support)</td><td><strong>$0</strong></td><td>No specialist dependency (capability)</td>
</tr>
<tr>
<td>Productivity loss during rollout</td><td>$100K+ (14 weeks training period)</td><td><strong>$0</strong></td><td>Instant time-to-value (30 seconds)</td>
</tr>
<tr>
<td>Renewal price increases</td><td>400% documented increases</td><td><strong>$0</strong></td><td>Flat pricing</td>
</tr>
<tr>
<td><strong>YEAR 1 TOTAL</strong></td><td><strong>$500K-$800K+</strong></td><td><strong>Software subscription only</strong></td><td><strong>Typical: 56x lower TCO</strong></td>
</tr>
</tbody>
</table>
<h4 class="content-section__heading">3-Year TCO Comparison</h4>
<table class="content-section__table">
<thead>
<tr>
<th>Year</th><th>Sisense (all categories)</th><th>Scoop (software only)</th><th>TCO Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td><td>$500K-$800K+</td><td>Software subscription</td><td>56x lower</td>
</tr>
<tr>
<td>Year 2</td><td>$300K+ (licenses + maintenance + consultants)</td><td
>Software subscription</td><td>40x lower</td>
</tr>
<tr>
<td>Year 3</td><td>$300K+ (ongoing costs + renewal increases)</td><td>Software subscription</td><td>40x lower</td>
</tr>
<tr>
<td><strong>3-Year Total</strong></td><td><strong>$1.1M-$1.4M+</strong></td><td><strong>Software × 3 years</strong></td><td><strong>Typical: 45x lower TCO</strong></td>
</tr>
</tbody>
</table>
<p class="content-section__paragraph">Note: Sisense ongoing costs include license renewals (often with 400% increases), ElastiCube maintenance, IT support, and consultant fees. Scoop costs = software subscription only (no additional categories).</p><h4 class="content-section__heading">Hidden Costs Breakdown</h4><p class="content-section__paragraph"><strong>Sisense Hidden Costs</strong>:</p><ol class="content-section__list">
<li><strong>400% Renewal Price Increases</strong></li>
</ol><p class="content-section__paragraph">- Description: Multiple customers report Sisense quadrupling prices when initial contracts end</p><p class="content-section__paragraph">- Estimated Cost: $200K-$400K unexpected increases</p><p class="content-section__paragraph">- Frequency: At renewal (typically 3 years)</p><p class="content-section__paragraph">- Source: Reddit customer reports, consultant documentation</p><ol class="content-section__list">
<li><strong>ElastiCube Management FTE</strong></li>
</ol><p class="content-section__paragraph">- Description: Requires dedicated data engineer for ongoing cube maintenance and updates</p><p class="content-section__paragraph">- Estimated Cost: $180K-$240K annually (1 FTE)</p><p class="content-section__paragraph">- Frequency: Ongoing requirement</p><p class="content-section__paragraph">- Source: Customer reports of 20-40 hours weekly maintenance</p><ol class="content-section__list">
<li><strong>Implementation Consultant Dependency</strong></li>
</ol><p class="content-section__paragraph">- Description: Complex ElastiCube architecture requires ongoing consultant support</p><p class="content-section__paragraph">- Estimated Cost: $50K-$100K annually</p><p class="content-section__paragraph">- Frequency: Recurring for changes and optimization</p><p class="content-section__paragraph">- Source: Multiple consultant firm documentation</p><ol class="content-section__list">
<li><strong>Productivity Loss During Training</strong></li>
</ol><p class="content-section__paragraph">- Description: 30-80 hours training per user reduces productivity for 1-2 months</p><p class="content-section__paragraph">- Estimated Cost: $100K+ for 200-user organization</p><p class="content-section__paragraph">- Frequency: One-time but massive impact</p><p class="content-section__paragraph">- Source: Sisense Academy curriculum requirements</p><ol class="content-section__list">
<li><strong>Emergency Cube Reconstruction</strong></li>
</ol><p class="content-section__paragraph">- Description: ElastiCube crashes require emergency rebuild with consultant help</p><p class="content-section__paragraph">- Estimated Cost: $15K-$25K per incident</p><p class="content-section__paragraph">- Frequency: 2-4 times per year based on customer reports</p><p class="content-section__paragraph">- Source: "Main elastic cube crashed and refused to be resurrected"</p><p class="content-section__paragraph"><strong>Real Customer Example</strong>:</p><blockquote class="content-section__quote">"400% price increase at renewal time - Sisense quadrupled the price when initial contract ended. We deployed an alternative in 72 hours."
- Company: Mid-size financial services
- Unexpected Cost: $380K annual increase
- Source: Reddit r/BusinessIntelligence</blockquote><h4 class="content-section__heading">The Cost Elimination Framework</h4><p class="content-section__paragraph"><strong>Traditional BI platforms have 6 cost categories. Scoop has 1.</strong></p><pre class="content-section__code"><code>Traditional BI TCO = Licenses + Implementation + Training + Maintenance + Consultants + Productivity Loss
= 1x + 2-4x + 0.5-2x + 1-2x + 1-3x + 2-4x
= 7.5x - 16x the license cost
Scoop TCO = Software subscription only
= 1x (everything else is $0)</code></pre><p class="content-section__paragraph"><strong>Why the 56x TCO advantage exists</strong>:</p><ol class="content-section__list">
<li><strong>$0 Implementation</strong> (architectural): No data modeling, 30-second setup</li><li><strong>$0 Training</strong> (capability): Excel users already know how to use it</li><li><strong>$0 Maintenance</strong> (architectural): No semantic layer to update</li><li><strong>$0 Consultants</strong> (capability): Business users work independently</li><li><strong>$0 Productivity Loss</strong> (capability): Instant time-to-value</li>
</ol><p class="content-section__paragraph"><strong>This advantage is defensible</strong> regardless of software pricing changes because it's based on architectural and capability differences, not pricing decisions.</p><h4 class="content-section__heading">ROI Comparison</h4><p class="content-section__paragraph"><strong>Sisense ROI Reality</strong>:</p><ul class="content-section__list">
<li>Year 1 Total Investment: $500K-$800K+ (all categories)</li><li>Time to First Value: 14+ weeks</li><li>Adoption Rate: 40-60% (requires extensive training)</li><li>Payback Period: 18-24 months (if successful)</li><li>Common Issue: Implementation failures and 400% renewal shocks</li>
</ul><p class="content-section__paragraph"><strong>Scoop ROI Reality</strong>:</p><ul class="content-section__list">
<li>Year 1 Total Investment: Software subscription (no other categories)</li><li>Time to First Value: 30 seconds</li><li>Adoption Rate: 95%+ (Excel-familiar users)</li><li>Payback Period: 3 hours (documented case study)</li><li>Key Advantage: Zero risk of implementation failure or renewal surprises</li>
</ul></div>
</div>
</section>
<section class="content-section content-section--alt" id="4-use-cases-scenarios">
<div class="content-section__container">
<h2 class="content-section__title">4. USE CASES & SCENARIOS</h2>
<div class="content-section__subsection"><h3 class="content-section__subtitle">When to Choose Scoop</h3><p class="content-section__paragraph"><strong>Scoop is the clear choice when you need</strong>:</p><ol class="content-section__list">
<li><strong>Business User Empowerment</strong></li>
</ol><p class="content-section__paragraph">- Users need answers without IT gatekeeping</p><p class="content-section__paragraph">- Excel skills are your team's strength</p><p class="content-section__paragraph">- Self-service analytics is the goal</p><ol class="content-section__list">
<li><strong>Fast Time-to-Value</strong></li>
</ol><p class="content-section__paragraph">- Need insights today, not in 14 weeks</p><p class="content-section__paragraph">- Cannot dedicate resources to implementation</p><p class="content-section__paragraph">- Agile, experimental approach preferred</p><ol class="content-section__list">
<li><strong>Investigation & Root Cause Analysis</strong></li>
</ol><p class="content-section__paragraph">- "Why" questions are more important than "what"</p><p class="content-section__paragraph">- Need to explore hypotheses dynamically</p><p class="content-section__paragraph">- Root cause analysis is critical</p><ol class="content-section__list">
<li><strong>Cost Efficiency</strong></li>
</ol><p class="content-section__paragraph">- Budget constraints limit options</p><p class="content-section__paragraph">- High ROI expectations</p><p class="content-section__paragraph">- Cannot justify $500K-$800K+ investment</p><ol class="content-section__list">
<li><strong>Workflow Integration</strong></li>
</ol><p class="content-section__paragraph">- Work happens in Excel, Slack, PowerPoint</p><p class="content-section__paragraph">- Need analytics embedded in daily tools</p><p class="content-section__paragraph">- API access for custom integrations</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">When Sisense Might Fit</h3><p class="content-section__paragraph"><strong>Consider Sisense if</strong>:</p><ol class="content-section__list">
<li><strong>ISV Embedded Analytics</strong></li>
</ol><p class="content-section__paragraph">- You're building software products for end customers</p><p class="content-section__paragraph">- Need white-label analytics embedded in your application</p><p class="content-section__paragraph">- Note: This is ISV use case, not business intelligence</p><ol class="content-section__list">
<li><strong>Already Heavily Invested</strong></li>
</ol><p class="content-section__paragraph">- Sunk cost of $500K+ implementation already spent</p><p class="content-section__paragraph">- Note: Consider switching cost vs 400% renewal increases</p><p class="content-section__paragraph"><strong>Reality Check</strong>: <5% of companies find Sisense's ISV strength areas actually apply to their business intelligence needs.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Department-by-Department Fit</h3>
<table class="content-section__table">
<thead>
<tr>
<th>Department</th><th>Sisense Fit</th><th>Scoop Fit</th><th>Key Differentiator</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Finance</strong></td><td>Poor - Requires IT for every budget model change</td><td>Excellent - Spreadsheet engine for complex FP&A calculations, variance analysis</td><td>Excel skills at scale</td>
</tr>
<tr>
<td><strong>Sales</strong></td><td>Poor - Dashboard viewing only, no investigation</td><td>Excellent - Personal Decks for pipeline tracking, ML deal scoring, CRM writeback</td><td>Self-service + ML</td>
</tr>
<tr>
<td><strong>Marketing</strong></td><td>Poor - ARIMA can't do customer segmentation</td><td>Excellent - ML_CLUSTER for customer segmentation, attribution analysis</td><td>Hidden segment discovery</td>
</tr>
<tr>
<td><strong>Customer Success</strong></td><td>Poor - No churn prediction ML</td><td>Excellent - Churn prediction with ML_RELATIONSHIP, proactive risk identification</td><td>Predictive + actionable</td>
</tr>
</tbody>
</table>
</div><div class="content-section__subsection"><h3 class="content-section__subtitle">Migration Considerations</h3><p class="content-section__paragraph"><strong>Migrating from Sisense to Scoop</strong>:</p>
<table class="content-section__table">
<thead>
<tr>
<th>Aspect</th><th>Complexity</th><th>Timeline</th><th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Migration</td><td>Low</td><td>30 seconds</td><td>Direct connector, no ElastiCube needed</td>
</tr>
<tr>
<td>User Training</td><td>Low</td><td>0 days</td><td>Excel skills transfer directly</td>
</tr>
<tr>
<td>Report Recreation</td><td>Low</td><td>1-2 hours</td><td>Ask questions vs rebuild dashboards</td>
</tr>
<tr>
<td>Integration Updates</td><td>Low</td><td>Minutes</td><td>Native tool integration</td>
</tr>
<tr>
<td>Change Management</td><td>Low</td><td>1 week</td><td>Easier tool = easier adoption</td>
</tr>
</tbody>
</table>
<p class="content-section__paragraph"><strong>Common Migration Path</strong>:</p><ol class="content-section__list">
<li>Pilot with one department (Week 1)</li><li>Expand to power users (Week 2-3)</li><li>Roll out company-wide (Week 4)</li><li>Deprecate Sisense (Month 2-3)</li>
</ol></div>
</div>
</section>
<section class="content-section " id="6-frequently-asked-questions">
<div class="content-section__container">
<h2 class="content-section__title">6. FREQUENTLY ASKED QUESTIONS</h2>
<div class="content-section__subsection"><h3 class="content-section__subtitle">Implementation & Setup</h3><p class="content-section__paragraph"><strong>Q: How long does Scoop implementation really take?</strong></p><p class="content-section__paragraph">A: 30 seconds. Connect your data source and ask your first question immediately. Sisense takes 14+ weeks with professional services and ElastiCube development.</p><p class="content-section__paragraph"><strong>Q: Do we need to build a data model for Scoop?</strong></p><p class="content-section__paragraph">A: No. Scoop works directly on raw data with automatic schema detection. Sisense requires ElastiCube SQL modeling before any analysis is possible.</p><p class="content-section__paragraph"><strong>Q: What about Sisense - how long is their implementation?</strong></p><p class="content-section__paragraph">A: 14+ weeks documented by multiple customers and consultants. "Not including the cost of any Sisense professional services" beyond the $89K base implementation cost.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Capabilities & Features</h3><p class="content-section__paragraph"><strong>Q: Can Scoop do embedded analytics like Sisense?</strong></p><p class="content-section__paragraph">A: Scoop focuses on business user empowerment, not ISV embedding. If you're building software products for end customers, Sisense's embedded analytics might fit. If you need business intelligence for internal teams, Scoop is designed for that.</p><p class="content-section__paragraph"><strong>Q: Does Scoop support Excel formulas like Sisense?</strong></p><p class="content-section__paragraph">A: Yes, 150+ native Excel functions including VLOOKUP, SUMIFS, INDEX/MATCH. Sisense has zero Excel formula support—export-only with 1.5M cell limit and no live connection.</p><p class="content-section__paragraph"><strong>Q: Can Scoop investigate "why" questions or just answer "what"?</strong></p><p class="content-section__paragraph">A: Scoop specializes in multi-pass investigation with 3-10 automated queries to find root causes. Sisense provides dashboard drill-down only—cannot investigate beyond navigation.</p><p class="content-section__paragraph"><strong>Q: Can Sisense handle complex analytical questions like "show top performers by calculated metric"?</strong></p><p class="content-section__paragraph">A: No. Questions like "show opportunities from top 5 sales reps by win rate" require custom ElastiCube development and dashboard widgets (2-4 weeks typical). Scoop handles these automatically via subquery generation—no pre-work needed.</p><p class="content-section__paragraph"><strong>Q: What ML algorithms does Scoop use?</strong></p><p class="content-section__paragraph">A: J48 decision trees, JRip rule mining, EM clustering—all with explainable outputs. Sisense uses ARIMA from 1970s (statistics, not ML) and deprecated Simply Ask because real AI failed.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Cost & ROI</h3><p class="content-section__paragraph"><strong>Q: What's the real cost of Sisense for 200 users?</strong></p><p class="content-section__paragraph">A: $500K-$800K+ year 1 including $89K+ implementation, $40K training, ongoing ElastiCube maintenance, plus documented 400% renewal increases. Hidden costs include consultant dependency and productivity loss.</p><p class="content-section__paragraph"><strong>Q: How much does Scoop cost compared to Sisense?</strong></p><p class="content-section__paragraph">A: Fraction of traditional BI TCO with 56x lower year 1 costs. Scoop eliminates implementation ($0), training ($0), and maintenance ($0) through architectural design.</p><p class="content-section__paragraph"><strong>Q: What's the ROI timeline for Scoop?</strong></p><p class="content-section__paragraph">A: Payback in 3 hours (documented). Sisense payback: 18-24 months if implementation succeeds.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Integration & Workflow</h3><p class="content-section__paragraph"><strong>Q: Can Scoop integrate with Salesforce?</strong></p><p class="content-section__paragraph">A: Yes, native connector with automatic schema detection. Works immediately without ElastiCube modeling.</p><p class="content-section__paragraph"><strong>Q: Does Scoop work in Excel like Sisense?</strong></p><p class="content-section__paragraph">A: Scoop has native Excel formula support with live data refresh. Sisense has export-only (static data, no formulas, 1.5M cell limit).</p><p class="content-section__paragraph"><strong>Q: Can we use Scoop in Slack?</strong></p><p class="content-section__paragraph">A: Yes, native Slack bot with full investigation capabilities. Sisense has screenshot posting only.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Technical & Security</h3><p class="content-section__paragraph"><strong>Q: Does Scoop meet our security/compliance requirements?</strong></p><p class="content-section__paragraph">A: SOC 2 Type II certified with enterprise security features. Sisense had CISA security incident in April 2024 requiring credential rotation.</p><p class="content-section__paragraph"><strong>Q: How does Scoop handle schema changes?</strong></p><p class="content-section__paragraph">A: Automatic adaptation with zero downtime. Sisense requires manual ElastiCube rebuilds (2-4 weeks) when data structure changes.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Framework & Scoring</h3><p class="content-section__paragraph"><strong>Q: What is the BUA Score and what does it measure?</strong></p><p class="content-section__paragraph">A: BUA (Business User Autonomy) Score measures how independently non-technical business users can work across 5 dimensions: Autonomy (self-service without IT), Flow (working in existing tools), Understanding (deep insights without analysts), Presentation (professional output without designers), and Data (all data ops without engineers). Scoop scores 45/50, Sisense scores 28/50.</p><p class="content-section__paragraph"><strong>Q: Why does Sisense score 28/50 when it's marketed as self-service?</strong></p><p class="content-section__paragraph">A: Sisense optimizes for ISV embedding and IT control, not business user independence. BUA measures business user autonomy—a different architecture goal. Sisense requires 14+ weeks IT implementation, 30-80 hours training, and ElastiCube SQL expertise, which contradicts self-service claims.</p></div><div class="content-section__subsection"><h3 class="content-section__subtitle">Decision-Making</h3><p class="content-section__paragraph"><strong>Q: When should we choose Sisense over Scoop?</strong></p><p class="content-section__paragraph">A: Choose Sisense if you're an ISV building embedded analytics into software products for end customers. This represents <5% of companies evaluating business intelligence tools.</p><p class="content-section__paragraph"><strong>Q: What if we're already invested in Sisense?</strong></p><p class="content-section__paragraph">A: Consider migration cost vs 400% renewal increases many customers report. Multiple customers switched to alternatives in 72 hours, saving $300K+ annually.</p><p class="content-section__paragraph"><strong>Q: Can we try Scoop before committing?</strong></p><p class="content-section__paragraph">A: Yes, 30-second setup means immediate evaluation with your actual data. Compare side-by-side with your Sisense results.</p></div>
</div>
</section>
<section class="content-section content-section--alt" id="7-next-steps">
<div class="content-section__container">
<h2 class="content-section__title">7. NEXT STEPS</h2>
<div class="content-section__subsection"><h3 class="content-section__subtitle">Get Started with Scoop</h3><p class="content-section__paragraph"><strong>Option 1: Self-Serve Trial</strong></p><ul class="content-section__list">
<li>Sign up: scoop.com</li><li>Connect your data source</li><li>Ask your first question</li><li>Time required: 30 seconds</li>
</ul><p class="content-section__paragraph"><strong>Option 2: Guided Demo</strong></p><ul class="content-section__list">
<li>See Scoop with your actual data</li><li>Compare side-by-side with Sisense</li><li>Get migration roadmap</li><li>Schedule: demo.scoop.com</li>
</ul><p class="content-section__paragraph"><strong>Option 3: Migration Assessment</strong></p><ul class="content-section__list">
<li>Free analysis of your Sisense usage</li><li>Custom migration plan</li><li>ROI calculation for your team</li><li>Request: migration@scoop.com</li>
</ul></div>
</div>
</section>
<section class="cta-section">
<div style="max-width: 800px; margin: 0 auto;">
<h2 class="cta-section__title">Ready to see the difference?</h2>
<p class="cta-section__subtitle">See why teams choose Scoop over Sisense</p>
<a href="https://www.scoopanalytics.com/demo" class="btn--white">Start Free Trial</a>
</div>
</section>
<script src="https://unpkg.com/lucide@latest"></script>
<script src="https://cdn.jsdelivr.net/npm/mermaid@10/dist/mermaid.min.js"></script>
<script>
lucide.createIcons();
mermaid.initialize({
startOnLoad: true,
theme: 'base',
themeVariables: {
primaryColor: '#4763F5',
primaryTextColor: '#130417',
primaryBorderColor: '#4763F5',
lineColor: '#4763F5',
secondaryColor: '#E3165B',
tertiaryColor: '#f8f9fd'
}
});
</script>